Supraconducteur à haute températureUn supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.
SupraconductivitéLa supraconductivité, ou supraconduction, est un phénomène physique caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs. La supraconductivité découverte historiquement en premier, et que l'on nomme communément supraconductivité conventionnelle, se manifeste à des températures très basses, proches du zéro absolu (). La supraconductivité permet notamment de transporter de l'électricité sans perte d'énergie.
Strongly correlated materialStrongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge separation. The essential feature that defines these materials is that the behavior of their electrons or spinons cannot be described effectively in terms of non-interacting entities.
Spectroscopie des rayons XLa spectroscopie des rayons X rassemble plusieurs techniques de caractérisation spectroscopique de matériaux par excitation par rayons X. Trois familles de techniques sont le plus souvent utilisées. Selon les phénomènes mis en jeu, on distingue trois classes : L'analyse se fait par l'une des deux méthodes suivantes : analyse dispersive en énergie (Energy-dispersive x-ray analysis (EDXA) en anglais) ; analyse dispersive en longueur d'onde (Wavelength dispersive x-ray analysis (WDXA) en anglais).
Unconventional superconductorUnconventional superconductors are materials that display superconductivity which does not conform to conventional BCS theory or its extensions. The superconducting properties of CeCu2Si2, a type of heavy fermion material, were reported in 1979 by Frank Steglich. For a long time it was believed that CeCu2Si2 was a singlet d-wave superconductor, but since the mid 2010s, this notion has been strongly contested. In the early eighties, many more unconventional, heavy fermion superconductors were discovered, including UBe13, UPt3 and URu2Si2.
Théorie des bandesredresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
Structure cristallineLa structure cristalline (ou structure d'un cristal) donne l'arrangement des atomes dans un cristal. Ces atomes se répètent périodiquement dans l'espace sous l'action des opérations de symétrie du groupe d'espace et forment ainsi la structure cristalline. Cette structure est un concept fondamental pour de nombreux domaines de la science et de la technologie. Elle est complètement décrite par les paramètres de maille du cristal, son réseau de Bravais, son groupe d'espace et la position des atomes dans l'unité asymétrique la maille.
MagnétismeLe magnétisme représente un ensemble de phénomènes physiques dans lesquels les objets exercent des forces attractives ou répulsives sur d'autres matériaux. Les courants électriques et les moments magnétiques des particules élémentaires fondamentales sont à l’origine du champ magnétique qui engendre ces forces. Tous les matériaux sont influencés, de manière plus ou moins complexe, par la présence d'un champ magnétique, et l’état magnétique d'un matériau dépend de sa température (et d'autres variables telles que la pression et le champ magnétique extérieur) de sorte qu'un matériau peut présenter différentes formes de magnétisme selon sa température.
Cristalvignette|Cristaux. vignette|Cristaux de sel obtenus par cristallisation lente dans une saumure à température ambiante. Un cristal est un solide dont les constituants (atomes, molécules ou ions) sont assemblés de manière régulière, par opposition au solide amorphe. Par « régulier » on veut généralement dire qu'un même motif est répété à l'identique un grand nombre de fois selon un réseau régulier, la plus petite partie du réseau permettant de recomposer l'empilement étant appelée une « maille ».
Spectroscopie photoélectroniqueLa spectroscopie photoélectronique (photoelectron spectroscopy, PES) ou spectroscopie de photoémission (photoemission spectroscopy) est un ensemble de méthodes spectroscopiques basées sur la détection d'électrons émis par des molécules après le bombardement de celle-ci par une onde électromagnétique monochromatique. Cette spectroscopie fait partie des méthodes de spectroscopie électronique. Elle est utilisée pour mesurer l'énergie de liaison des électrons dans la matière, c'est-à-dire à sonder les états occupés.