Condensat fermioniqueUn condensat fermionique est un ensemble de fermions identiques qui présente une phase de superfluidité à basse température. C'est l'équivalent pour les fermions des condensats de Bose-Einstein pour les bosons. Les premiers condensats de Bose-Einstein moléculaires furent produits en 1995, ouvrant la voie à l'étude des condensats quantiques. En 1999, l'équipe de Deborah Jin, refroidit pour la première fois un gaz de fermions dans le régime de dégénérescence quantique mais l'interaction entre particules n'était pas suffisamment forte pour montrer une transition de phase.
Quasi-particuleLes quasi-particules, ou quasiparticules, sont des entités conçues comme des particules et facilitant la description des systèmes de particules, particulièrement en physique de la matière condensée. Parmi les plus connues, on distingue les trous d'électrons qui peuvent être vus comme un "manque d'électron", et les phonons, qui décrivent des "paquets de vibration". Les solides sont formés de trois types de particules : les électrons, les protons et les neutrons.
Macroscopic quantum phenomenaMacroscopic quantum phenomena are processes showing quantum behavior at the macroscopic scale, rather than at the atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena are superfluidity and superconductivity; other examples include the quantum Hall effect and topological order. Since 2000 there has been extensive experimental work on quantum gases, particularly Bose–Einstein condensates. Between 1996 and 2016 six Nobel Prizes were given for work related to macroscopic quantum phenomena.
Transition de phasevignette|droite|Noms exclusifs des transitions de phase en thermodynamique. En physique, une transition de phase est la transformation physique d'un système d'une phase vers une autre, induite par la variation d'un paramètre de contrôle externe (température, champ magnétique...). Une telle transition se produit lorsque ce paramètre externe atteint une valeur seuil (ou valeur « critique »). La transformation traduit généralement un changement des propriétés de symétrie du système.
Loi de mélangeEn probabilité et en statistiques, une loi de mélange est la loi de probabilité d'une variable aléatoire s'obtenant à partir d'une famille de variables aléatoires de la manière suivante : une variable aléatoire est choisie au hasard parmi la famille de variables aléatoires donnée, puis la valeur de la variable aléatoire sélectionnée est réalisée. Les variables aléatoires sous-jacentes peuvent être des nombres réels aléatoires, ou des vecteurs aléatoires (chacun ayant la même dimension), auquel cas la répartition du mélange est une répartition à plusieurs variables.
Condensat de Bose-EinsteinUn condensat de Bose-Einstein est un état de la matière apparent au niveau macroscopique, formé de bosons identiques (typiquement des atomes se comportant comme des bosons), tel qu'un grand nombre de ces particules, à une température suffisamment basse, occupent un unique état quantique de plus basse énergie (état fondamental) lui donnant des propriétés spécifiques. Ce phénomène a été prédit en 1925 par Albert Einstein, qui a généralisé au cas des atomes les travaux de Satyendranath Bose sur les statistiques quantiques des photons (travaux ouvrant la voie vers les lasers).
Mécanique quantiqueLa mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
Loi inverse-gammaDans la Théorie des probabilités et en statistiques, la distribution inverse-gamma est une famille de lois de probabilité continues à deux paramètres sur la demi-droite des réels positifs. Il s'agit de l'inverse d'une variable aléatoire distribuée selon une distribution Gamma. La densité de probabilité de la loi inverse-gamma est définie sur le support par: où est un paramètre de forme et un paramètre d'intensité, c'est-à-dire l'inverse d'un paramètre d'échelle.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Loi logistiqueEn probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.