Théorie des réseauxvignette|Graphe partiel de l'internet, basé sur les données de opte.org du 15 janvier 2005 (voir description de l'image pour plus de détails) La théorie des réseaux est l'étude de graphes en tant que représentation d'une relation symétrique ou asymétrique entre des objets discrets. Elle s'inscrit dans la théorie des graphes : un réseau peut alors être défini comme étant un graphe où les nœuds (sommets) ou les arêtes (ou « arcs », lorsque le graphe est orienté) ont des attributs, comme une étiquette (tag).
Réseau de flotEn théorie des graphes, un réseau de flot (aussi appelé réseau de transport) est un graphe orienté où chaque arête possède une capacité et peut recevoir un flot (ou flux). Le cumul des flots sur une arête ne peut pas excéder sa capacité. Un graphe orienté est souvent appelé réseau en recherche opérationnelle. Les sommets sont alors appelés des nœuds et les arêtes des arcs. Pour qu'un flot soit valide, il faut que la somme des flots atteignant un nœud soit égale à la somme des flots quittant ce nœud, sauf s'il s'agit d'une source (qui n'a pas de flot entrant), ou d'un puits (qui n'a pas de flot sortant).
Estimation par noyauEn statistique, l’estimation par noyau (ou encore méthode de Parzen-Rosenblatt ; en anglais, kernel density estimation ou KDE) est une méthode non-paramétrique d’estimation de la densité de probabilité d’une variable aléatoire. Elle se base sur un échantillon d’une population statistique et permet d’estimer la densité en tout point du support. En ce sens, cette méthode généralise astucieusement la méthode d’estimation par un histogramme. Si est un échantillon i.i.d.
Traffic flowIn mathematics and transportation engineering, traffic flow is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.
Topologie de réseauvignette Une topologie de réseau informatique correspond à l'architecture (physique, logicielle ou logique) de celui-ci, définissant les liaisons entre les équipements du réseau et une hiérarchie éventuelle entre eux. Elle peut définir la façon dont les équipements sont interconnectés et la représentation spatiale du réseau (topologie physique). Elle peut aussi définir la façon dont les données transitent dans les lignes de communication (topologies logiques).
Ingénierie des transportsvignette| L'ingénierie de ce rond-point à Bristol, en Angleterre, tente de faire circuler le trafic librement. L'ingénierie des transports est l'application de principes technologiques et scientifiques à la planification, la conception, l'exploitation et la gestion des installations destinés aux moyens de transport afin de garantir la sécurité, l'efficacité, la rapidité, le confort, la commodité du transport de personnes et de marchandises. Parmi les sous-disciplines de l'ingénierie des transports on peut citer l'ingénierie ferroviaire et l'ingénierie marine.
Réseau socialEn sciences humaines et sociales, l'expression réseau social désigne un agencement de liens entre des individus ou des organisations, constituant un groupement qui a un sens : la famille, les collègues, un groupe d'amis, une communauté, etc. L'anthropologue australien John Arundel Barnes a introduit l'expression en 1954. L'analyse des réseaux sociaux est devenue une spécialité universitaire dans le champ de la sociologie, se fondant sur la théorie des réseaux et l'usage des graphes.
Réseau de télécommunicationsvignette|Diagramme générique d'un réseau informatique "arborescent" ou "hiérarchique" Un réseau de télécommunications est un réseau d'arcs (liaisons de télécommunications) et de nœuds (commutateurs, routeurs...), mis en place de telle sorte que des messages puissent être transmis d'un bout à l'autre du réseau au travers des multiples liaisons. Les liaisons d'un réseau de télécommunication peuvent être réalisées grâce à des systèmes de transmission hiérarchiques.
Masse volumiqueLa masse volumique d'une substance, aussi appelée volumique de masse, est une grandeur physique qui caractérise la masse de cette substance par unité de volume. C'est l'inverse du volume massique. La masse volumique est synonyme des expressions désuètes « densité absolue », « densité propre », ou encore « masse spécifique ». Cette grandeur physique est généralement notée par les lettres grecques ρ (rhô) ou μ (mu). Leur usage dépend du domaine de travail. Toutefois, le BIPM recommande d'utiliser la notation ρ.
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.