Exact solutions in general relativityIn general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.
Fluid solutionIn general relativity, a fluid solution is an exact solution of the Einstein field equation in which the gravitational field is produced entirely by the mass, momentum, and stress density of a fluid. In astrophysics, fluid solutions are often employed as stellar models. (It might help to think of a perfect gas as a special case of a perfect fluid.) In cosmology, fluid solutions are often used as cosmological models.
Dust solutionIn general relativity, a dust solution is a fluid solution, a type of exact solution of the Einstein field equation, in which the gravitational field is produced entirely by the mass, momentum, and stress density of a perfect fluid that has positive mass density but vanishing pressure. Dust solutions are an important special case of fluid solutions in general relativity. A pressureless perfect fluid can be interpreted as a model of a configuration of dust particles that locally move in concert and interact with each other only gravitationally, from which the name is derived.
Vacuum solution (general relativity)In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field.
Système intégrableEn mécanique hamiltonienne, un système intégrable au sens de Liouville est un système qui possède un nombre suffisant de indépendantes. Lorsque le mouvement est borné, la dynamique est alors périodique ou quasi périodique. Soit un système à N degrés de liberté qui est décrit à l'instant par : les N coordonnées généralisées les N moments conjugués . À chaque instant, les 2N coordonnées définissent un point dans l'espace des phases Γ = R2N. L'évolution dynamique du système sous le flot hamiltonien se traduit par une courbe continue appelée orbite dans cet espace des phases.