Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose an algorithmic framework for convex minimization problems of a composite function with two terms: a self-concordant function and a possibly nonsmooth regularization term. Our method is a new proximal Newton algorithm that features a local quadratic convergence rate. As a specific instance of our framework, we consider the sparse inverse covariance matrix estimation in graph learning problems. Via a careful dual formulation and a novel analytic step-size selection procedure, our approach for graph learning avoids Cholesky decompositions and matrix inversions in its iteration making it attractive for parallel and distributed implementations.
Giancarlo Ferrari Trecate, Maryam Kamgarpour, Yuning Jiang, Baiwei Guo