Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Atlas (robot)vignette|Vue de face du robot Atlas en 2013. Atlas est un robot de type androïde principalement développé par Boston Dynamics, sous financement et surveillance de la Defense Advanced Research Projects Agency (DARPA). Il mesure 1,88 m et est conçu pour diverses tâches de recherche et sauvetage, il a été dévoilé au public le . Le développement d'Atlas fait partie du Darpa Robotics Challenge. En 2016, une vidéo présentant une évolution du robot est diffusée par Boston Dynamics.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Robotique industriellevignette|droite|Un robot industriel Kawasaki FS-03N, robot de soudage La robotique industrielle est officiellement définie par l'Organisation Internationale de Normalisation (ISO) comme étant un système commandé automatiquement, multi-applicatif, reprogrammable, polyvalent, manipulateur et programmable sur trois axes ou plus. Les applications typiques incluent les robots de soudage, de peinture et d'assemblage. L'avantage de la robotique industrielle est sa rapidité d'exécution et sa précision ainsi que la répétition de cette précision dans le temps.
Locomotion robotiqueLa locomotion robotique est le nom collectif des différentes méthodes que les robots utilisent pour se déplacer d'un endroit à l'autre. Les robots à roues sont généralement assez efficaces sur le plan énergétique et simples à contrôler. Toutefois, d'autres formes de locomotion peuvent être plus appropriées pour un certain nombre de raisons, par exemple pour traverser un terrain accidenté, ainsi que pour se déplacer et interagir dans des environnements humains.
Robot end effectorIn robotics, an end effector is the device at the end of a robotic arm, designed to interact with the environment. The exact nature of this device depends on the application of the robot. In the strict definition, which originates from serial robotic manipulators, the end effector means the last link (or end) of the robot. At this endpoint, the tools are attached. In a wider sense, an end effector can be seen as the part of a robot that interacts with the work environment.
Statistical Methods for Research WorkersStatistical Methods for Research Workers is a classic book on statistics, written by the statistician R. A. Fisher. It is considered by some to be one of the 20th century's most influential books on statistical methods, together with his The Design of Experiments (1935). It was originally published in 1925, by Oliver & Boyd (Edinburgh); the final and posthumous 14th edition was published in 1970. According to Denis Conniffe: Ronald A.
Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.
Complexité en moyenne des algorithmesLa complexité en moyenne d'un algorithme est la quantité d'une ressource donnée, typiquement le temps, utilisée par l'algorithme lors de son exécution pour traiter une entrée tirée selon une distribution donnée. Il s'agit par conséquent d'une moyenne de la complexité, pondérée entre les différentes entrées possibles selon la distribution choisie. Le plus souvent, on ne précise pas la distribution et on utilise implicitement une distribution uniforme (i.e.