SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Isolant de MottLes isolants de Mott sont des matériaux présentant une phase conductrice, avec une structure de bande électronique (voir théorie des bandes) délocalisée sur tout le réseau cristallin, et pouvant devenir isolant du fait d'une forte interaction répulsive entre électrons, entrainant leur localisation sur les noyaux atomiques. Dans un solide, lorsque les interactions répulsives entre les électrons d'un métal deviennent trop fortes, il peut se produire une "localisation" des électrons qui restent "accrochés" aux atomes constituant le réseau cristallin.
Nombre quantique secondaireEn mécanique quantique, le nombre quantique secondaire, noté l, également appelé nombre quantique azimutal, est l'un des quatre nombres quantiques décrivant l'état quantique d'un électron dans un atome. Il s'agit d'un nombre entier positif ou nul lié au nombre quantique principal n par la relation : . Il correspond au moment angulaire orbital de l'électron, et définit les sous-couches électroniques des atomes, tandis que le nombre quantique principal n définit les couches électroniques.
Niveau de FermiLe niveau de Fermi est une caractéristique propre à un système qui traduit la répartition des électrons dans ce système en fonction de la température. La notion de niveau de Fermi est utilisée en physique et en électronique, notamment dans le cadre du développement des composants semi-conducteurs. Concrètement, le niveau de Fermi est une fonction de la température mais il peut être considéré, en première approximation, comme une constante, laquelle équivaudrait alors au niveau de plus haute énergie occupé par les électrons du système à la température de .
Dégénérescence (physique quantique)En physique quantique, la dégénérescence est le fait pour plusieurs états quantiques distincts de se retrouver au même niveau d'énergie. Un niveau d'énergie est dit dégénéré s'il correspond à plusieurs états distincts d'un atome, molécule ou autre système quantique. Le nombre d'états différents qui correspond à un niveau donné est dit son degré de dégénérescence. Mathématiquement, la dégénérescence est décrite par un opérateur hamiltonien ayant plusieurs fonctions propres avec la même valeur propre.
Énergie de FermiL'énergie de Fermi, EF, en mécanique quantique, est l'énergie du plus haut état quantique occupé dans un système par des fermions à . Parfois, le terme est confondu avec le niveau de Fermi, qui décrit un sujet proche quoique différent, le niveau de Fermi représentant le potentiel chimique des fermions. Ces deux quantités sont les mêmes à , mais diffèrent pour toute autre température.
Théorie des bandesredresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
Introduction à la mécanique quantiqueLe but de cet article est de présenter une introduction accessible, non technique, au sujet. Pour l'article encyclopédique consulter Mécanique quantique. La mécanique quantique est la science de l'infiniment petit : elle regroupe l'ensemble des travaux scientifiques qui interprètent le comportement des constituants de la matière, et ses interactions avec l'énergie, à l'échelle des atomes et des particules subatomiques. La physique classique décrit la matière et l'énergie à l'échelle humaine, dans leur observation de tous les jours, y compris les corps célestes.
Surface de FermiEn mécanique quantique et en physique de la matière condensée, la surface de Fermi est une limite abstraite utile pour prédire les caractéristiques électriques, magnétiques, etc. de matériaux, en particulier des métaux. La description de la surface de Fermi ne se fait pas dans le réseau cristallin réel, mais dans le réseau réciproque où l'énergie peut être directement exprimée en fonction de la quantité de mouvement. Le réseau réciproque est obtenu par une transformée de Fourier du réseau réel et est un outil indispensable pour la description des propriétés d'un solide en physique.
Liquidevignette|L'eau est une substance abondante sur la surface terrestre, se manifestant notamment sous forme de liquide. vignette|Diagramme montrant comment sont configurés les molécules et les atomes pour les différents états de la matière.