Robust parameter estimation for the Ornstein-Uhlenbeck process
Publications associées (142)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Model specification is an integral part of any statistical inference problem. Several model selection techniques have been developed in order to determine which model is the best one among a list of possible candidates. Another way to deal with this questi ...
Closed-form solutions are traditionally used in computer vision for estimating rigid body transformations. Here we suggest an iterative solution for estimating rigid body transformations and prove its global convergence. We show that for a number of applic ...
We study distributed least-mean square (LMS) estimation problems over adaptive networks, where nodes cooperatively work to estimate and track common parameters of an unknown system. We consider a scenario where the input and output response signals of the ...
Estimation of a vector from quantized linear measurements is a common problem for which simple linear techniques are suboptimal—sometimes greatly so. This paper develops message-passing de-quantization (MPDQ) algorithms for minimum mean-squared error estim ...
We study the problem of distributed least-squares estimation over ad hoc adaptive networks, where the nodes have a common objective to estimate and track a parameter vector. We consider the case where there is stationary additive colored noise on both the ...
Many recent algorithms for sparse signal recovery can be interpreted as maximum-a-posteriori (MAP) estimators relying on some specific priors. From this Bayesian perspective, state-of-the-art methods based on discrete-gradient regularizers, such as total- ...
We propose a novel statistical formulation of the image-reconstruction problem from noisy linear measurements. We derive an extended family of MAP estimators based on the theory of continuous-domain sparse stochastic processes. We highlight the crucial ro ...
We present a diffusion-based bias-compensated recursive least squares (RLS) algorithm for distributed estimation in ad-hoc adaptive sensor networks where nodes cooperate to estimate a common deterministic parameter vector. It is assumed that both the regre ...
We propose a novel statistical formulation of the image-reconstruction problem from noisy linear measurements. We derive an extended family of MAP estimators based on the theory of continuous-domain sparse stochastic processes. We highlight the crucial rol ...
In this paper we consider a nonlinear constrained system observed by a sensor network and propose a distributed state estimation scheme based on moving horizon estimation (MHE). In order to embrace the case where the whole system state cannot be reconstruc ...