Robust parameter estimation for the Ornstein-Uhlenbeck process
Publications associées (142)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper we consider a nonlinear constrained system observed by a sensor network and propose a distributed state estimation scheme based on moving horizon estimation (MHE). In order to embrace the case where the whole system state cannot be reconstruc ...
In this paper we present an optimal estimator of magnitude spectrum for speech enhancement when the clean speech DFT coefficients are modeled by a Laplacian distribution and the noise DFT coefficients are modeled by a Gaussian distribution. Chen has alread ...
Time series modeling and analysis is central to most financial and econometric data modeling. With increased globalization in trade, commerce and finance, national variables like gross domestic productivity (GDP) and unemployment rate, market variables lik ...
This paper proposes a robust semiparametric bootstrap method to estimate predictive distributions of GARCH-type models. The method is based on a robust estimation of parametric GARCH models and a robustified resampling scheme for GARCH residuals that contr ...
Loss tomography aims at inferring the loss rate of links in a network from end-to-end measurements. Previous work in [1] has developed optimal maximum likelihood estimators (MLEs) for link loss rates in a single-source multicast tree. However, only sub-opt ...
Integral observers are useful tools for estimating the plant states in the presence of non-vanishing disturbances resulting from plant-model mismatch and exogenous disturbances. It is well known that these observers can eliminate bias in all states, given ...
This paper presents an efficient adaptive combination strategy for the distributed estimation problem over diffusion networks in order to improve robustness against the spatial variation of signal and noise statistics over the network. The concept of minim ...
Accurate calibration is a requirement of many array signal processing techniques. We investigate the calibration of a transducer array using time delays. We derive a strategy based on the mean square error criterion and discuss how time delays that are not ...
This paper considers the problem of estimating the focus of expansion of optical flow fields from panoramic image sequences due to ego-motion of the camera. The focus of expansion provides a measurement of the direction of motion of the vehicle that is a k ...
In this paper, we consider model combination methods for adaptive filtering that perform unbiased estimation. In this widely studied framework, two adaptive filters are run in parallel, each producing unbiased estimates of an underlying linear model. The o ...