Blood pressureBlood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" refers to the pressure in a brachial artery, where it is most commonly measured. Blood pressure is usually expressed in terms of the systolic pressure (maximum pressure during one heartbeat) over diastolic pressure (minimum pressure between two heartbeats) in the cardiac cycle.
VagueUne vague () est une déformation de la surface d'une masse d'eau le plus souvent sous l'effet du vent. À l'interface des deux fluides principaux de la Terre, le vent crée des vagues sur les océans, mers et lacs. Ces mouvements irréguliers se dispersent à la surface de l'eau et sont collectivement appelés état de la mer. D'autres phénomènes, moins fréquents, sont aussi la source de vagues. Ainsi, les séismes majeurs, éruptions volcaniques ou chutes de météorites créent également des vagues appelées tsunamis ou raz-de-marée.
Équations de Boussinesqthumb|right|250px|Ondes de gravité à l'entrée d'un port (milieu à profondeur variable). Les équations de Boussinesq en mécanique des fluides désignent un système d'équations d'ondes obtenu par approximation des équations d'Euler pour des écoulements incompressibles irrotationnels à surface libre. Elles permettent de prévoir les ondes de gravité comme ondes cnoïdales, ondes de Stokes, houle, tsunamis, solitons, etc. Ces équations ont été introduites par Joseph Boussinesq en 1872 et sont un exemple d'équations aux dérivées partielles dispersives.
Internal waveInternal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change (continuously or discontinuously) with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance (as in the case of the thermocline in lakes and oceans or an atmospheric inversion), the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface.
Hémodynamiquevignette L'hémodynamique (ou « dynamique du sang »), du grec haima, « le sang » et dunamis, dunamikos, « la force », est la science des propriétés physiques de la circulation sanguine en mouvement dans le système cardiovasculaire. Cette discipline couvre des aspects physiologiques et cliniques avec l'angiologie. Le système circulatoire est constitué d'un ensemble moteur de pompes (pompe cardiaque, pompe musculaire veineuse, pompe abdomino-thoracique) et de conduits tubulaires résistants (les vaisseaux sanguins).
Ondevignette|Propagation d'une onde. Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales du milieu. Elle se déplace avec une vitesse déterminée qui dépend des caractéristiques du milieu de propagation. vignette|Une vague s'écrasant sur le rivage. Il existe trois principaux types d'ondes : les ondes mécaniques se propagent à travers une matière physique dont la substance se déforme. Les forces de restauration inversent alors la déformation.
Pression atmosphériquevignette|350px|Pression de l'air p en fonction de l'altitude h. Formule du nivellement barométrique : . vignette|350px|En noir : variation diurne de la pression atmosphérique mesurée en Allemagne en septembre 2004. La pression atmosphérique est la pression qu'exerce le mélange gazeux constituant l'atmosphère considérée (sur Terre : de l'air) sur une surface quelconque en contact avec elle. Les molécules de ce mélange, animées d'un mouvement aléatoire incessant, l'agitation thermique, subissent des collisions entre elles et contre les surfaces des objets.
Airy wave theoryIn fluid dynamics, Airy wave theory (often referred to as linear wave theory) gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.
Onde de StokesLes ondes de Stokes sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles ont des solutions des équations d'Euler pour un fluide incompressible irrotationnel à surface libre soumis à un champ de gravité qui ont été obtenues par George Gabriel Stokes par la théorie des perturbations en 1847 dans le cas d'un milieu de profondeur infinie. Pour un écoulement incompressible irrotationnel la vitesse dérive d'un potentiel ψ, les équations d'incompressibilité et de quantité de mouvement s'écrivent où ρ est la masse volumique, p la pression, g la gravité et z l'altitude.
Onde cnoïdalevignette|Bombardiers de la USAAF survolant une houle en eau peu profonde près de la côte du Panama en 1933. Ces crêtes bien définies et ces creux plats sont caractéristiques des ondes cnoïdales. Les ondes cnoïdales sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles sont solutions de l'équation de Korteweg-de Vries où interviennent les fonctions elliptiques de Jacobi notées cn, d'où le nom d'ondes « cn-oïdales ». Ce type d'onde apparaît également dans les problèmes de propagation d'onde acoustique ionique.