Estimation par noyauEn statistique, l’estimation par noyau (ou encore méthode de Parzen-Rosenblatt ; en anglais, kernel density estimation ou KDE) est une méthode non-paramétrique d’estimation de la densité de probabilité d’une variable aléatoire. Elle se base sur un échantillon d’une population statistique et permet d’estimer la densité en tout point du support. En ce sens, cette méthode généralise astucieusement la méthode d’estimation par un histogramme. Si est un échantillon i.i.d.
Multivariate kernel density estimationKernel density estimation is a nonparametric technique for density estimation i.e., estimation of probability density functions, which is one of the fundamental questions in statistics. It can be viewed as a generalisation of histogram density estimation with improved statistical properties. Apart from histograms, other types of density estimators include parametric, spline, wavelet and Fourier series. Kernel density estimators were first introduced in the scientific literature for univariate data in the 1950s and 1960s and subsequently have been widely adopted.
Statistiques non paramétriquesLa statistique non paramétrique est un domaine de la statistique qui ne repose pas sur des familles de loi de probabilité paramétriques. Les méthodes non paramétriques pour la régression comprennent les histogrammes, les méthodes d'estimation par noyau, les splines et les décompositions dans des dictionnaires de filtres (par exemple décomposition en ondelettes). Bien que le nom de non paramétriques soit donné à ces méthodes, elles reposent en vérité sur l'estimation de paramètres.
Kernel regressionIn statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable. The objective is to find a non-linear relation between a pair of random variables X and Y. In any nonparametric regression, the conditional expectation of a variable relative to a variable may be written: where is an unknown function. Nadaraya and Watson, both in 1964, proposed to estimate as a locally weighted average, using a kernel as a weighting function.
Noyau (statistiques)Un noyau est une fonction de pondération utilisée dans les techniques d'estimation non-paramétrique. Les noyaux interviennent dans l'estimateur par noyau pour estimer la densité de probabilité d'une variable aléatoire, ou encore dans la régression paramétrique (à noyau) pour estimer des espérances conditionnelles. Pour les séries temporelles, le noyau permet d'estimer la densité spectrale. Un noyau est une fonction positive, intégrable et à valeurs réelles, notée K, qui doit vérifier les deux conditions suivantes : normalisation : symétrie : pour toutes les valeurs de u.
Density estimationIn statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The unobservable density function is thought of as the density according to which a large population is distributed; the data are usually thought of as a random sample from that population. A variety of approaches to density estimation are used, including Parzen windows and a range of data clustering techniques, including vector quantization.
Théorème de RadonLe théorème de projection de Radon établit la possibilité de reconstituer une fonction réelle à deux variables (assimilable à une image) à l'aide de la totalité de ses projections selon des droites concourantes. L'application la plus courante de ce théorème est la reconstruction d'images médicales en tomodensitométrie, c'est-à-dire dans les scanneurs à rayon X. Il doit son nom au mathématicien Johann Radon. En pratique, il est impossible de disposer de toutes les projections d'un objet solide, seulement un échantillonnage.
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Kernel smootherA kernel smoother is a statistical technique to estimate a real valued function as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter. Kernel smoothing is a type of weighted moving average. Let be a kernel defined by where: is the Euclidean norm is a parameter (kernel radius) D(t) is typically a positive real valued function, whose value is decreasing (or not increasing) for the increasing distance between the X and X0.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.