Concept

Théorème de Radon

Résumé
Le théorème de projection de Radon établit la possibilité de reconstituer une fonction réelle à deux variables (assimilable à une image) à l'aide de la totalité de ses projections selon des droites concourantes. L'application la plus courante de ce théorème est la reconstruction d'images médicales en tomodensitométrie, c'est-à-dire dans les scanneurs à rayon X. Il doit son nom au mathématicien Johann Radon. En pratique, il est impossible de disposer de toutes les projections d'un objet solide, seulement un échantillonnage. Mais il existe des méthodes pour combler ce manque d'information conformément à ce que l'on sait a priori sur l'image, par exemple les méthodes d'entropie maximale (voir théorème de Cox-Jaynes). Transformée de Radon Considérons une fonction de deux variables ƒ ; c'est typiquement une densité définie dans le plan (x, y). Considérons une droite L de ce plan. La transformée de Radon de cette droite est simplement l'intégrale le long de la droite :
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement