Predictive Gaze Stabilization During Periodic Locomotion Based On Adaptive Frequency Oscillators
Publications associées (100)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy eff ...
Transferring solutions found by trajectory optimization to robotic hardware remains a challenging task. When the optimization fully exploits the provided model to perform dynamic tasks, the presence of unmodeled dynamics renders the motion infeasible on th ...
Agile quadrupedal locomotion in animals and robots is yet to be fully understood, quantified
or achieved. An intuitive notion of agility exists, but neither a concise definition nor a common
benchmark can be found. Further, it is unclear, what minimal leve ...
Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of s ...
Most current drones are designed with a static morphology aimed at exploiting a single locomotion mode. This results in limited versatility and adaptability to multi-domain environments, such as those encountered in rescue missions, agriculture and inspect ...
This paper presents a novel method to perform automatic standing balance in a full mobilization exoskeleton. It exploits the locked ankle and the curved foot sole of the exoskeleton TWIICE. The idea is to use the knees to roll the sole and change the posit ...
This paper provides insight into the application of the quadrupedal robot ANYmal in outdoor missions of industrial inspection (autonomous robot for gas and oil sites [ARGOS] challenge) and search and rescue (European Robotics League (ERL) Emergency Robots) ...
Mobile robots build on accurate, real-time mapping with onboard range sensors to achieve autonomous navigation over rough terrain. Existing approaches often rely on absolute localization based on tracking of external geometric or visual features. To circum ...
This work investigates the usage of compliant universal grippers as a novel foot design for legged locomotion. The method of jamming of granular media in the universal grippers is characterized by having two distinct states: a soft, fluid-like state which ...
Legged machines have the potential to traverse terrain that wheeled robots cannot. These capabilities are useful in scenarios such as stairs in homes or debris-filled disaster scenes, such as earthquake areas. This thesis develops one of the algorithms nec ...