Rotation vectorielleSoit E un espace vectoriel euclidien. Une rotation vectorielle de E est un élément du groupe spécial orthogonal SO(E). Si on choisit une base orthonormée de E, sa matrice dans cette base est orthogonale directe. Matrice de rotation Dans le plan vectoriel euclidien orienté, une rotation vectorielle est simplement définie par son angle . Sa matrice dans une base orthonormée directe est : Autrement dit, un vecteur de composantes a pour image le vecteur de composantes que l'on peut calculer avec l'égalité matricielle : c'est-à-dire que l'on a : et Si par exemple et , désigne un des angles du triangle rectangle de côtés 3, 4 et 5.
Plane of rotationIn geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can be used to break down the rotations into simpler parts. This can be done using geometric algebra, with the planes of rotations associated with simple bivectors in the algebra.
Plasma stabilityThe stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD).
MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
Rotation (physique)En cinématique, l'étude des corps en rotation est une branche fondamentale de la physique du solide et particulièrement de la dynamique, y compris de la dynamique des fluides, qui complète celle du mouvement de translation. L'analyse du mouvement de rotation se prolonge y compris aux échelles atomiques, avec la dynamique moléculaire et l'étude de la fonction d'onde en mécanique quantique.
État plasmathumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Fréquence plasmaEn physique, la fréquence plasma, ou fréquence de Langmuir, ou encore pulsation plasma, est la fréquence caractéristique des ondes de plasma, c'est-à-dire des oscillations des charges électriques présentes dans les milieux conducteurs, comme le métal ou les plasmas. À l'image de l'onde électromagnétique qui, quantifiée, est décrite par des photons, cette onde de plasma est quantifiée en plasmons.
Plasma astrophysiqueUn plasma astrophysique est un gaz ionisé dont les propriétés physiques sont étudiées en tant que filière de l'astrophysique. On croit qu'une grande partie de la matière baryonique se compose de plasma, un état de matière où les molécules n'existent pas ; les atomes sont si chauds qu'ils deviennent ionisés en se morcelant en ions (de charge positive) et électrons (de charge négative). Par conséquent, les particules sont chargées et sont fortement influencées par les champs électriques et magnétiques.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Rotation formalisms in three dimensionsIn geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.