Fluide sombrevignette|upright=1.5|Image composite montrant l'amas de la Balle. Cette image montre en arrière-plan des images de galaxies prises par les télescopes Hubble et Magellan. Le revêtement en rose montre les émissions de rayons X (enregistrées par le télescope spatial Chandra) de la collision des deux amas, alors que les émissions en bleu représentent la distribution de la masse de ces amas, calculée à partir d'effets de lentille gravitationnelle.
Principe cosmologiqueLa cosmologie ne peut s’envisager qu’en faisant des hypothèses simplificatrices que l’on appelle des « principes cosmologiques ». Sans cet artifice, il faudrait en effet connaître les vitesses et les positions de toutes les particules dans l’espace, ce qui est tout simplement impossible. On distingue actuellement quatre grands principes : Le principe cosmologique d'homogénéité et d'isotropie ; Le principe cosmologique parfait (ou d'équivalence temporelle) ; Le principe cosmologique global ; Le principe cosmologique de l'Univers fractal.
Singularité gravitationnelleEn relativité générale, une singularité gravitationnelle est une région de l'espace-temps au voisinage de laquelle certaines quantités décrivant le champ gravitationnel deviennent infinies quel que soit le système de coordonnées retenu. Les singularités gravitationnelles sont des singularités mises en évidence par les solutions de l'équation du champ gravitationnel d'Albert Einstein. Une singularité gravitationnelle est une singularité du tenseur métrique g et non une simple singularité de coordonnées.
Initial singularityThe initial singularity is a singularity predicted by some models of the Big Bang theory to have existed before the Big Bang and thought to have contained all the energy and spacetime of the Universe. The instant immediately following the initial singularity is part of the Planck epoch, the earliest period of time in the history of our universe. The use of only general relativity to predict what happened in the beginnings of the Universe has been heavily criticized, as quantum mechanics becomes a significant factor in the high-energy environment of the earliest Universe, and general relativity on its own fails to make accurate predictions.
Cosmologie cyclique conformeLa cosmologie cyclique conforme (CCC), en Conformal cyclic cosmology, est un modèle cosmologique dans le cadre de la relativité générale, avancé par le physicien théoricien Roger Penrose, lauréat du prix Nobel de physique 2020. Dans la CCC, l'Univers se réitère à travers une série de cycles infinis, l'infinité temporelle future de chaque itération précédente étant identifiée à la singularité du Big Bang suivant. Roger Penrose affirme que . Roger Penrose a popularisé cette théorie dans son livre, de 2010, intitulé Les Cycles du temps : une nouvelle vision de l’Univers.
Tachyonic fieldIn physics, a tachyonic field, or simply tachyon, is a quantum field with an imaginary mass. Although tachyonic particles (particles that move faster than light) are a purely hypothetical concept that violate a number of essential physical principles, at least one field with imaginary mass, the Higgs field, is believed to exist. Under no circumstances do any excitations of tachyonic fields ever propagate faster than light—the presence or absence of a tachyonic (imaginary) mass has no effect on the maximum velocity of signals, and so unlike faster-than-light particles there is no violation of causality.
Champ scalaireUn champ scalaire est une fonction de plusieurs variables qui associe un seul nombre (ou scalaire) à chaque point de l'espace. Les champs scalaires sont utilisés en physique pour représenter les variations spatiales de grandeurs scalaires. Un champ scalaire est une forme ou où x est un vecteur de Rn. Le champ scalaire peut être visualisé comme un espace à n dimensions avec un nombre complexe ou réel attaché à chaque point de l'espace. La dérivée d'un champ scalaire résulte en un champ vectoriel appelé le gradient.
Loi de Hubble-LemaîtreEn astronomie, la loi de Hubble-Lemaître (anciennement loi de Hubble) énonce que les galaxies s'éloignent les unes des autres à une vitesse approximativement proportionnelle à leur distance. Autrement dit, plus une galaxie est loin de nous, plus elle semble s'éloigner rapidement. Cette loi ne concerne que la partie de l'univers accessible aux observations. L'extrapolation de la loi de Hubble-Lemaître sur des distances plus grandes est possible, mais uniquement si l'univers demeure homogène et isotrope sur de plus grandes distances.
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Théorie des perturbationsLa théorie des perturbations est un domaine des mathématiques, qui consiste à étudier les contextes où il est possible de trouver une solution approchée à une équation en partant de la solution d'un problème plus simple. Plus précisément, on cherche une solution approchée à une équation (E) (dépendante d'un paramètre λ), sachant que la solution de l'équation (E) (correspondant à la valeur λ=0) est connue exactement. L'équation mathématique (E) peut être par exemple une équation algébrique ou une équation différentielle.