Publication

Improving Control of Dexterous Hand Prostheses Using Adaptive Learning

Résumé

At the time of this writing, the main means of control for polyarticulated self-powered hand prostheses is surface electromyography (sEMG). In the clinical setting, data collected from two electrodes are used to guide the hand movements selecting among a finite number of postures. Machine learning has been applied in the past to the sEMG signal (not in the clinical setting) with interesting results, which provide more insight on how these data could be used to improve prosthetic functionality. Researchers have mainly concentrated so far on increasing the accuracy of sEMG classification and/or regression, but, in general, a finer control implies a longer training period. A desirable characteristic would be to shorten the time needed by a patient to learn how to use the prosthesis. To this aim, we propose here a general method to reuse past experience, in the form of models synthesized from previous subjects, to boost the adaptivity of the prosthesis. Extensive tests on databases recorded from healthy subjects in controlled and non-controlled conditions reveal that the method significantly improves the results over the baseline nonadaptive case. This promising approach might be employed to pretrain a prosthesis before shipping it to a patient, leading to a shorter training phase.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.