Scalaire (physique)En physique, un scalaire est une grandeur dont la valeur ne dépend que du point auquel on l'évalue et est indépendante du système de coordonnées. Une grandeur scalaire s'oppose à une grandeur vectorielle : la grandeur scalaire a uniquement une valeur mais pas de direction ou de sens. Les mathématiques utilisent la notion de scalaire dans le même sens en algèbre linéaire, indépendamment de toute grandeur physique. Les quantités scalaires sont invariables par rapport aux rotations de coordonnées (et aux transformations de Lorentz en théorie de la relativité).
Géométrie algorithmiquevignette|Rendu d'un cylindre à l'aide d'un programme d'ordinateur. La géométrie algorithmique est le domaine de l'algorithmique qui traite des algorithmes manipulant des concepts géométriques. La géométrie algorithmique est l'étude des algorithmes manipulant des objets géométriques. Par exemple, le problème algorithmique qui consiste, étant donné un ensemble de points dans le plan décrits par leurs coordonnées, à trouver la paire de points dont la distance est minimale est un problème d'algorithmique géométrique.
Théorème de Helmholtz-HodgeEn mathématiques et en physique, dans le domaine de l’analyse vectorielle, le théorème de Helmholtz-Hodge, également appelé théorème fondamental du calcul vectoriel, assure qu'un champ vectoriel se décompose en une composante « longitudinale » (irrotationnelle) et une composante « transverse » (solénoïdale), soit la somme du gradient d’un champ scalaire et du rotationnel d’un champ vectoriel. Ce résultat possède des applications importantes en électromagnétisme et en mécanique des fluides ; il est également exploité en sismologie.
Formule quadratiqueEn algèbre classique, la formule quadratique est la solution de l'équation du second degré. Il y a d'autres façons pour résoudre l'équation du second degré au lieu d'utiliser la formule quadratique, comme la factorisation, la méthode de complétion du carré ou le tracé du graphe. Mais utiliser la formule quadratique est souvent la façon la plus pratique. L'équation du second degré générale est : Ici, x représente une valeur inconnue alors que a, b et c sont constantes, avec a non nul.
Lie bracket of vector fieldsIn the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted [X, Y]. Conceptually, the Lie bracket [X, Y] is the derivative of Y along the flow generated by X, and is sometimes denoted ("Lie derivative of Y along X"). This generalizes to the Lie derivative of any tensor field along the flow generated by X.