Complex lamellar vector fieldIn vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl. A lamellar vector field is a special case given by vector fields with zero curl. The adjective "lamellar" derives from the noun "lamella", which means a thin layer.
Multiplication par un scalairevignette|320x320px|Exemple de multiplication d'un vecteur par un scalaire En mathématiques, la multiplication par un scalaire est l'une des lois externes de base définissant un espace vectoriel en algèbre linéaire (ou plus généralement, un module en algèbre générale). Si K est un corps commutatif, la définition d'un espace vectoriel E sur K prescrit l'existence d'une loi de composition externe, une application de K × E dans E. L'image d'un couple (λ, v), pouvant être notée λv ou λ∙v, est la multiplication du vecteur v par le scalaire λ.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
Anisotropic diffusionIn and computer vision, anisotropic diffusion, also called Perona–Malik diffusion, is a technique aiming at reducing without removing significant parts of the image content, typically edges, lines or other details that are important for the interpretation of the image. Anisotropic diffusion resembles the process that creates a scale space, where an image generates a parameterized family of successively more and more blurred images based on a diffusion process.
Équation du second degréEn mathématiques, une équation du second degré, ou équation quadratique, est une équation polynomiale de degré 2, c'est-à-dire qu'elle peut s'écrire sous la forme : Dans cette équation, x est l'inconnue les lettres a, b et c représentent les coefficients, avec a différent de 0. a est le coefficient quadratique, b est le coefficient linéaire, et c est un terme constant où le polynome est défini sur .
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Regularized least squaresRegularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations. In such settings, the ordinary least-squares problem is ill-posed and is therefore impossible to fit because the associated optimization problem has infinitely many solutions.
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Scalaire (mathématiques)En algèbre linéaire, les nombres réels qui multiplient les vecteurs dans un espace vectoriel sont appelés des scalaires. Cette multiplication par un scalaire, qui permet de multiplier un vecteur par un nombre pour produire un vecteur, correspond à la loi externe de l'espace vectoriel. Plus généralement, dans un K-espace vectoriel, les scalaires sont les éléments de K, où K peut être l'ensemble des nombres complexes ou n'importe quel autre corps.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.