Fuchsian modelIn mathematics, a Fuchsian model is a representation of a hyperbolic Riemann surface R as a quotient of the upper half-plane H by a Fuchsian group. Every hyperbolic Riemann surface admits such a representation. The concept is named after Lazarus Fuchs. By the uniformization theorem, every Riemann surface is either elliptic, parabolic or hyperbolic. More precisely this theorem states that a Riemann surface which is not isomorphic to either the Riemann sphere (the elliptic case) or a quotient of the complex plane by a discrete subgroup (the parabolic case) must be a quotient of the hyperbolic plane by a subgroup acting properly discontinuously and freely.
Base de données orientée objetEn informatique, une base de données à objets (anglais object database) est un stock d'informations groupées sous forme de collections d'objets persistants. Une base de données est un ensemble d'informations connexes stockées dans un dispositif informatique. Dans une base de données à objets les informations sont regroupées sous forme d'objets : un conteneur logique qui englobe des informations et des traitements relatifs à une chose du monde réel.
Pair of pants (mathematics)In mathematics, a pair of pants is a surface which is homeomorphic to the three-holed sphere. The name comes from considering one of the removed disks as the waist and the two others as the cuffs of a pair of pants. Pairs of pants are used as building blocks for compact surfaces in various theories. Two important applications are to hyperbolic geometry, where decompositions of closed surfaces into pairs of pants are used to construct the Fenchel-Nielsen coordinates on Teichmüller space, and in topological quantum field theory where they are the simplest non-trivial cobordisms between 1-dimensional manifolds.
Kleinian groupIn mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3.
Seconde forme fondamentaleLa seconde forme fondamentale est une forme quadratique caractérisant certains aspects de la géométrie différentielle des surfaces. Ce concept est d'abord apparu dans l'étude des surfaces réglées avant de prendre toute sa généralité dans le cadre de la géométrie riemannienne. Alors que la première forme fondamentale décrit la « géométrie interne » d'une surface (c'est-à-dire les propriétés qui peuvent être déterminées depuis la surface elle-même), la seconde forme fondamentale dépend de la situation de la surface dans l'espace.
Quartique de Kleinthumb|La quartique de Klein est le quotient d'un pavage uniforme triangulaire d'ordre 7. En géométrie hyperbolique, la quartique de Klein, du nom du mathématicien allemand Felix Klein, est une surface de Riemann compacte de genre 3. Elle a le groupe d'automorphismes d'ordre le plus élevé possible parmi les surfaces de Riemann de genre 3, à savoir le groupe simple d'ordre 168. La quartique de Klein est en conséquence la de genre le plus bas possible. Surface de Bolza Surface de Macbeath Théorème de Stark-Hee
Geodesics in general relativityIn general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).