Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
La seconde forme fondamentale est une forme quadratique caractérisant certains aspects de la géométrie différentielle des surfaces. Ce concept est d'abord apparu dans l'étude des surfaces réglées avant de prendre toute sa généralité dans le cadre de la géométrie riemannienne. Alors que la première forme fondamentale décrit la « géométrie interne » d'une surface (c'est-à-dire les propriétés qui peuvent être déterminées depuis la surface elle-même), la seconde forme fondamentale dépend de la situation de la surface dans l'espace. Elle est utile pour le calcul des courbures et apparaît par exemple dans les équations de Gauss-Codazzi. Les deux formes quadratiques fondamentales permettent de définir les notions de courbure principale, de courbure moyenne et de courbure gaussienne . Du point de vue technique, la seconde forme fondamentale est une forme quadratique sur l'espace tangent de l'hypersurface d'une variété riemannienne. Soit une surface Σ paramétrée par X(u, v). En un point P donné, le plan tangent (lorsqu'il est défini) est généré par les vecteurs tangents et , notés respectivement Xu et Xv. Le vecteur normal est défini comme étant le vecteur unitaire n colinéaire à Xu ∧ Xv. Dans le repère (P, Xu, Xv, n), si la surface est localement lisse, on peut faire un développement limité de Σ sous la forme et définir la forme quadratique avec Cette forme quadratique II est appelée seconde forme fondamentale. Elle peut aussi être représentée par la matrice Les vecteurs tangents (Xu, Xv) constituent une base du plan vectoriel tangent à Σ en P ; tout vecteur tangent peut s'écrire comme combinaison linéaire de Xu et Xv. La seconde forme fondamentale appliquée à deux vecteurs w1 = aXu + bXv et w2 = cXu + dXv s'écrit II(w1, w2) = Lac + M(ad + bc) + Nbd et pour un seul vecteur II(w1, w1) = La2 + 2Mab + Nb2 La seconde forme fondamentale s'exprime également à partir de l'opérateur de forme S et du produit scalaire : II(w1, w2) = S(w1)⋅w2.
Pascal Fua, Benoît Alain René Guillard, Edoardo Remelli
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Arvind Shah, Rakesh Chawla, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Guido Andreassi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Long Wang, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer