ViscoélasticitéLa viscoélasticité est la propriété de matériaux qui présentent des caractéristiques à la fois visqueuses et élastiques, lorsqu'ils subissent une déformation. Les matériaux visqueux, comme le miel, résistent bien à un écoulement en cisaillement et présentent une déformation qui augmente linéairement avec le temps lorsqu'une contrainte est appliquée. Les matériaux élastiques se déforment lorsqu'ils sont contraints, et retournent rapidement à leur état d'origine une fois la contrainte retirée.
Conduction thermiqueLa conduction thermique (ou diffusion thermique) est un mode de transfert thermique provoqué par une différence de température entre deux régions d'un même milieu, ou entre deux milieux en contact, et se réalisant sans déplacement global de matière (à l'échelle macroscopique) par opposition à la convection qui est un autre mode de transfert thermique. Elle peut s'interpréter comme la transmission de proche en proche de l'agitation thermique : un atome (ou une molécule) cède une partie de son énergie cinétique à l'atome voisin.
Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Produit cartésien (graphe)Le produit cartésien, ou somme cartésienne, est une opération sur deux graphes et résultant en un graphe . Parler de produit ou de somme pour cette opération n'est pas une contradiction, mais une explication basée sur deux aspects différents : la construction peut se voir comme un produit, tandis que de nombreuses propriétés sont basées sur la somme. Soient deux graphes et . Le produit cartésien est défini comme suit : Autrement dit, l'ensemble résultant des sommets est le produit cartésien .
Direct stiffness methodAs one of the methods of structural analysis, the direct stiffness method, also known as the matrix stiffness method, is particularly suited for computer-automated analysis of complex structures including the statically indeterminate type. It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM).
Multigrid methodIn numerical analysis, a multigrid method (MG method) is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier analysis approach to multigrid.
Groupe classiqueEn mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
Méthode des éléments finis de frontièreLa méthode des éléments finis de frontière, méthode des éléments frontière ou BEM - Boundary Element Method - en anglais, est une méthode de résolution numérique. Elle se présente comme une alternative à la méthode des éléments finis avec la particularité d'être plus intéressante dans les domaines de modélisation devenant infinis. Méthode des moments (analyse numérique) Méthode des différences finies Méthode des volumes finis Méthode des éléments finis Méthode des points sources distribués Introduction à l
Computable functionComputable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines.
Conductivité thermiqueLa conductivité thermique (ou conductibilité thermique) d'un matériau est une grandeur physique qui caractérise sa capacité à diffuser la chaleur dans les milieux sans déplacement macroscopique de matière. C'est le rapport de l'énergie thermique (quantité de chaleur) transférée par unité de temps (donc homogène à une puissance, en watts) et de surface au gradient de température. Notée λ (anciennement K voire k), la conductivité thermique intervient notamment dans la loi de Fourier.