Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Propagation des convictionsLa propagation des convictions (Belief Propagation ou BP en anglais), aussi connu comme la transmission de message somme-produit, est un algorithme à passage de message pour effectuer des inférences sur des modèles graphiques, tels que les réseaux Bayésiens et les champs de Markov. Il calcule la distribution marginale de chaque nœud « non-observé » conditionnée sur les nœuds observés.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Canal binaire symétriqueAlice veut transmettre un message à Bob. Un canal binaire symétrique est un canal discret où Alice transmet une suite d’éléments de l'ensemble et où la probabilité d'erreur dans la transmission d'un symbole est de , pour 0 et pour 1 (d'où la symétrie). Ce canal est sans mémoire, c'est-à-dire qu'aucune archive des messages n'est conservée. En communication, un problème classique est d'envoyer de l'information d'une source à une destination via un canal de communication, en présence de bruit.
Automate finithumb|upright=2|Fig. 1 : Une hiérarchie d'automates. Un automate fini ou automate avec un nombre fini d'états (en anglais finite-state automaton ou finite state machine ou FSM) est un modèle mathématique de calcul, utilisé dans de nombreuses circonstances, allant de la conception de programmes informatiques et de circuits en logique séquentielle aux applications dans des protocoles de communication, en passant par le contrôle des processus, la linguistique et même la biologie.
Block codeIn coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way.
Code de répétitionLe code de répétition est une solution simple pour se prémunir des erreurs de communication dues au bruit dans un canal binaire symétrique. C'est une technique de codage de canal, c'est-à-dire un code correcteur. Il s'agit d'envoyer plusieurs copies de chaque bit à être transmis. Autrement dit, ce code de répétition encode la transmission des bits ainsi (sur trois bits) : La première chaîne de caractères est appelée le 0 logique et la deuxième, le 1 logique puisqu'elles jouent le rôle de 0 et 1 respectivement.
Théorème du codage de canalEn théorie de l'information, le théorème du codage de canal aussi appelé deuxième théorème de Shannon montre qu'il est possible de transmettre des données numériques sur un canal bruité avec un taux d'erreur arbitrairement faible si le débit est inférieur à une certaine limite propre au canal. Ce résultat publié par Claude Shannon en 1948 est fondé sur des travaux antérieurs de Harry Nyquist et Ralph Hartley. La première preuve rigoureuse fut établie par Amiel Feinstein en 1954.
Automate fini non déterministeUn automate fini (on dit parfois, par une traduction littérale de l'anglais, machine à états finis, au lieu de machine avec un nombre fini d'états ou machine à états finie ou machine finie à états), finite-state automaton ou finite-state machine (FSA, FSM), est une machine abstraite qui est un outil fondamental en mathématiques discrètes et en informatique. On les retrouve dans la modélisation de processus, le contrôle, les protocoles de communication, la vérification de programmes, la théorie de la calculabilité, dans l'étude des langages formels et en compilation.