Cycle (théorie des graphes)thumb|Dans ce graphe, le cycle rouge est élémentaire. Le cycle bleu ne l'est pas. La chaine verte n'est pas fermée et ne forme donc pas un cycle. Dans un graphe non orienté, un cycle est une suite d'arêtes consécutives distinctes (chaine simple) dont les deux sommets extrémités sont identiques. Dans les graphes orientés, la notion équivalente est celle de circuit, même si on parle parfois aussi de cycle (par exemple dans l'expression graphe acyclique orienté).
Graphe orienté acycliqueEn théorie des graphes, un graphe orienté acyclique (en anglais directed acyclic graph ou DAG), est un graphe orienté qui ne possède pas de circuit. Un tel graphe peut être vu comme une hiérarchie. Un graphe orienté acyclique est un graphe orienté qui ne possède pas de circuit. On peut toujours trouver un sous-graphe couvrant d’un graphe orienté acyclique qui soit un arbre (resp. une forêt). Dans un graphe orienté acyclique, la relation d'accessibilité R(u, v) définie par « il existe un chemin de u à v » est une relation d'ordre partielle.
Méthode de la puissance itéréeEn mathématiques, la méthode de la puissance itérée ou méthode des puissances est un algorithme pour calculer la valeur propre dominante d'une matrice. Bien que cet algorithme soit simple à mettre en œuvre et populaire, il ne converge pas très vite. Étant donné une matrice A, on cherche une valeur propre de plus grand module et un vecteur propre associé. Le calcul de valeurs propres n'est en général pas possible directement (avec une formule close) : on utilise alors des méthodes itératives, et la méthode des puissances est la plus simple d'entre elles.
Mean squared prediction errorIn statistics the mean squared prediction error (MSPE), also known as mean squared error of the predictions, of a smoothing, curve fitting, or regression procedure is the expected value of the squared prediction errors (PE), the square difference between the fitted values implied by the predictive function and the values of the (unobservable) true value g. It is an inverse measure of the explanatory power of and can be used in the process of cross-validation of an estimated model.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Bootstrap aggregatingLe bootstrap aggregating, également appelé bagging (de bootstrap aggregating), est un meta-algorithme d'apprentissage ensembliste conçu pour améliorer la stabilité et la précision des algorithmes d'apprentissage automatique. Il réduit la variance et permet d'éviter le surapprentissage. Bien qu'il soit généralement appliqué aux méthodes d'arbres de décision, il peut être utilisé avec n'importe quel type de méthode. Le bootstrap aggregating est un cas particulier de l'approche d'apprentissage ensembliste.
Small-world networkA small-world network is a mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other. Due to this, most neighboring nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is: while the global clustering coefficient is not small.
Mean absolute percentage errorThe mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics. It usually expresses the accuracy as a ratio defined by the formula: where At is the actual value and Ft is the forecast value. Their difference is divided by the actual value At. The absolute value of this ratio is summed for every forecasted point in time and divided by the number of fitted points n.
Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.