Transformée de WalshEn mathématiques, et plus précisément en analyse harmonique, la transformée de Walsh est l'analogue de la transformée de Fourier discrète. Elle opère sur un corps fini à la place des nombres complexes. Elle est utilisée en théorie de l'information à la fois pour les codes linéaires et la cryptographie. Analyse harmonique sur un groupe abélien fini Le contexte est identique à celui de l'analyse harmonique classique d'un groupe abélien fini.
Champ aléatoire de MarkovUn champ aléatoire de Markov est un ensemble de variables aléatoires vérifiant une propriété de Markov relativement à un graphe non orienté. C'est un modèle graphique. Soit un graphe non orienté et un ensemble de variables aléatoires indexé par les sommets de . On dit que est un champ aléatoire de Markov relativement à si une des trois propriétés suivantes est vérifiée c'est-à-dire que deux variables aléatoires dont les sommets associés ne sont pas voisins dans le graphe sont indépendantes conditionnellement à toutes les autres variables.
Factor graphA factor graph is a bipartite graph representing the factorization of a function. In probability theory and its applications, factor graphs are used to represent factorization of a probability distribution function, enabling efficient computations, such as the computation of marginal distributions through the sum-product algorithm. One of the important success stories of factor graphs and the sum-product algorithm is the decoding of capacity-approaching error-correcting codes, such as LDPC and turbo codes.
Point critique (mathématiques)En analyse à plusieurs variables, un point critique d'une fonction de plusieurs variables, à valeurs numériques, est un point d'annulation de son gradient, c'est-à-dire un point tel que . La valeur prise par la fonction en un point critique s'appelle alors une valeur critique. Les valeurs qui ne sont pas critiques sont appelées valeurs régulières. Les points critiques servent d'intermédiaire pour la recherche des extrémums d'une telle fonction.
Complément de SchurEn algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit une matrice de dimension (p+q)×(p+q), où les blocs A, B, C, D sont des matrices de dimensions respectives p×p, p×q, q×p et q×q, avec D inversible. Alors, le complément de Schur du bloc D de la matrice M est constitué par la matrice de dimension p×p suivante : Lorsque B est la transposée de C, la matrice M est symétrique définie positive si et seulement si D et son complément de Schur dans M le sont.
Fonction de demande marshallienneEn théorie microéconomique, une fonction de demande marshallienne, d'après le nom de l'économiste anglais Alfred Marshall, décrit ce que le consommateur désire acheter en fonction des prix des biens sur le marché et de son revenu. Cette notion suppose que le consommateur est un homo œconomicus, c'est-à-dire capable de résoudre parfaitement le problème de maximisation d'utilité.
Integral polytopeIn geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points. Integral polytopes are also called lattice polytopes or Z-polytopes. The special cases of two- and three-dimensional integral polytopes may be called polygons or polyhedra instead of polytopes, respectively. An -dimensional regular simplex can be represented as an integer polytope in , the convex hull of the integer points for which one coordinate is one and the rest are zero.