Ring learning with errorsIn post-quantum cryptography, ring learning with errors (RLWE) is a computational problem which serves as the foundation of new cryptographic algorithms, such as NewHope, designed to protect against cryptanalysis by quantum computers and also to provide the basis for homomorphic encryption. Public-key cryptography relies on construction of mathematical problems that are believed to be hard to solve if no further information is available, but are easy to solve if some information used in the problem construction is known.
Cryptographie sur les courbes elliptiquesLa cryptographie sur les courbes elliptiques (en anglais, elliptic curve cryptography ou ECC) regroupe un ensemble de techniques cryptographiques qui utilisent une ou plusieurs propriétés des courbes elliptiques, ou plus généralement d'une variété abélienne. L'usage des courbes elliptiques en cryptographie a été suggéré, de manière indépendante, par Neal Koblitz et Victor S. Miller en 1985.
Secret partagéEn cryptographie, un secret partagé () est une donnée connue seulement des parties impliquées dans une communication sécurisée. Le secret partagé peut être un mot de passe, une phrase secrète, un grand nombre ou une suite aléatoire de bits. Le secret partagé est soit partagé à l'avance entre les parties communicantes, auquel cas il peut également être appelé une clé prépartagée, soit il est créé au début de la session de communication en utilisant un protocole d'accord de clé, par exemple en utilisant la cryptographie asymétrique comme l'échange de clés Diffie-Hellman ou en utilisant la cryptographie symétrique comme le protocole Kerberos.
Secret répartiLe secret réparti ou le partage de secret consiste à distribuer un secret, par exemple une clé ou un mot de passe, entre plusieurs dépositaires. Le secret ne peut être découvert que si un nombre suffisant de dépositaires mettent en commun les informations qu'ils ont reçues. En revanche, un nombre inférieur de dépositaire n’apporte aucune information sur le secret. Le secret réparti a été inventé indépendamment par Adi Shamir et George Blakley en 1979. Plus formellement, n dépositaires reçoivent chacun une information différente.
Lattice-based cryptographyLattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions are currently important candidates for post-quantum cryptography. Unlike more widely used and known public-key schemes such as the RSA, Diffie-Hellman or elliptic-curve cryptosystems — which could, theoretically, be defeated using Shor's algorithm on a quantum computer — some lattice-based constructions appear to be resistant to attack by both classical and quantum computers.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Cryptographie symétriquevignette|320x320px|Schéma du chiffrement symétrique: la même clé est utilisée pour le chiffrement et le déchiffrement La cryptographie symétrique, également dite à clé secrète (par opposition à la cryptographie asymétrique), est la plus ancienne forme de chiffrement. Elle permet à la fois de chiffrer et de déchiffrer des messages à l'aide d'un même mot clé. On a des traces de son utilisation par les Égyptiens vers 2000 av. J.-C. Plus proche de nous, on peut citer le chiffre de Jules César, dont le ROT13 est une variante.
Physique numériqueLa physique numérique (ou parfois physique informatique) est l'étude et l'implémentation d'algorithmes numériques dans le but de résoudre des problèmes physiques pour lesquels une théorie existe déjà. Elle est souvent considérée comme une sous-discipline de la physique théorique mais certains la considèrent comme une branche intermédiaire entre la physique théorique et la physique expérimentale. En général, les physiciens définissent un système et son évolution grâce à des formules mathématiques précises.
Ideal latticeIn discrete mathematics, ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient.
Cryptosystème de ElGamalLe cryptosystème d'ElGamal, ou chiffrement El Gamal (ou encore système d'El Gamal) est un protocole de cryptographie asymétrique inventé par Taher Elgamal en 1984 et construit à partir du problème du logarithme discret. Ce protocole est utilisé par le logiciel libre GNU Privacy Guard dont les versions récentes implémentent jusqu'à sa version sur les courbes elliptiques. Contrairement au chiffrement RSA, il n’a jamais été sous la protection d’un brevet.