Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Robust regressionIn robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations).
Regression dilutionRegression dilution, also known as regression attenuation, is the biasing of the linear regression slope towards zero (the underestimation of its absolute value), caused by errors in the independent variable. Consider fitting a straight line for the relationship of an outcome variable y to a predictor variable x, and estimating the slope of the line. Statistical variability, measurement error or random noise in the y variable causes uncertainty in the estimated slope, but not bias: on average, the procedure calculates the right slope.
Coefficient de déterminationvignette|Illustration du coefficient de détermination pour une régression linéaire. Le coefficient de détermination est égal à 1 moins le rapport entre la surface des carrés bleus et la surface des carrés rouges. En statistique, le coefficient de détermination linéaire de Pearson, noté R ou r, est une mesure de la qualité de la prédiction d'une régression linéaire. où n est le nombre de mesures, la valeur de la mesure , la valeur prédite correspondante et la moyenne des mesures.
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.
Design matrixIn statistics and in particular in regression analysis, a design matrix, also known as model matrix or regressor matrix and often denoted by X, is a matrix of values of explanatory variables of a set of objects. Each row represents an individual object, with the successive columns corresponding to the variables and their specific values for that object. The design matrix is used in certain statistical models, e.g., the general linear model.
Spatial epidemiologySpatial epidemiology is a subfield of epidemiology focused on the study of the spatial distribution of health outcomes; it is closely related to health geography. Specifically, spatial epidemiology is concerned with the description and examination of disease and its geographic variations. This is done in consideration of “demographic, environmental, behavioral, socioeconomic, genetic, and infections risk factors." Disease Mapping Disease maps are visual representations of intricate geographic data that provide a quick overview of said information.
Variabilité et changements climatiquesLa variabilité climatique correspond à tous les changements du système climatique qui persistent plus longtemps qu'un évènement météorologique. Un changement climatique est une modification durable (de la décennie au million d'années) des paramètres statistiques (paramètres moyens, variabilité) du climat global de la Terre ou de ses divers climats régionaux. Ces changements peuvent être dus à des processus intrinsèques à la Terre, à des influences extérieures ou, plus récemment, aux activités humaines.
Télémètre laserUn télémètre laser est un appareil permettant de mesurer les distances. Un rayon laser est projeté sur une cible qui renvoie à son tour le rayon lumineux. Le boîtier électronique calcule le déphasage entre l'émission et la réception. Un rayon modulé en fréquence est projeté sur une cible. La cible renvoie ce rayon vers l'appareil. Le temps mis par le rayon pour revenir est mesuré et la distance séparant l'utilisateur de la cible est calculée. Un principe voisin est utilisé par les forces de l’ordre pour effectuer des contrôles de vitesse.
Lidarthumb|FASOR, lidar à fluorescence expérimental utilisé pour sonder la densité de la haute atmosphère en excitant les atomes de sodium. La télédétection par laser ou lidar, acronyme de l'expression en langue anglaise « light detection and ranging » ou « laser imaging detection and ranging » (soit en français « détection et estimation de la distance par la lumière » ou « par laser »), est une technique de mesure à distance fondée sur l'analyse des propriétés d'un faisceau de lumière renvoyé vers son émetteur.