Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper presents a new mechanism for a better exploitation of surrogate models in the framework of Evolution Strategies (ESs). This mechanism is instantiated here on the self-adaptive surrogate-assisted Covariance Matrix Adaptation Evolution Strategy ((s)*ACM-ES), a recently proposed surrogate-assisted variant of CMA-ES. As well as in the original (s)*ACM-ES, the expensive function is optimized by exploiting the surrogate model, whose hyper-parameters are also optimized online. The main novelty concerns a more intensive exploitation of the surrogate model by using much larger population sizes for its optimization. The new variant of (s)*ACM-ES significantly improves the original (s)*ACM-ES and further increases the speed-up compared to the CMA-ES, especially on unimodal functions (e.g., on 20-dimensional Rotated Ellipsoid, (s)*ACM-ES is 6 times faster than aCMA-ES and almost by one order of magnitude faster than CMA-ES). The empirical validation on the BBOB-2013 noiseless testbed demonstrates the efficiency and the robustness of the proposed mechanism.
Anne-Florence Raphaëlle Bitbol, Richard Marie Servajean
Anne-Florence Raphaëlle Bitbol
,