Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We investigate the evolutionary rescue of a microbial population in a gradually deteriorating environment, through a combination of analytical calculations and stochastic simulations. We consider a population destined for extinction in the absence of mutants, which can only survive if mutants sufficiently adapted to the new environment arise and fix. We show that mutants that appear later during the environment deterioration have a higher probability to fix. The rescue probability of the population increases with a sigmoidal shape when the product of the carrying capacity and of the mutation probability increases. Furthermore, we find that rescue becomes more likely for smaller population sizes and/or mutation probabilities if the environment degradation is slower, which illustrates the key impact of the rapidity of environment degradation on the fate of a population. We also show that our main conclusions are robust across various types of adaptive mutants, including specialist and generalist ones, as well as mutants modeling antimicrobial resistance evolution. We further express the average time of appearance of the mutants that do rescue the population and the average extinction time of those that do not. Our methods can be applied to other situations with continuously variable fitnesses and population sizes, and our analytical predictions are valid in the weak-to-moderate mutation regime.
Vincent Kaufmann, Eloi Antoine Maël Bernier, Florian Lucien Jacques Masse, Ludy Juliana González Villamizar
Anne-Florence Raphaëlle Bitbol, Richard Marie Servajean