Dynamical Approximation By Hierarchical Tucker And Tensor-Train Tensors
Publications associées (41)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A rank-adaptive integrator for the approximate solution of high-order tensor differential equations by tree tensor networks is proposed and analyzed. In a recursion from the leaves to the root, the integrator updates bases and then evolves connection tenso ...
In this thesis, we propose and analyze novel numerical algorithms for solving three different high-dimensional problems involving tensors. The commonality of these problems is that the tensors can potentially be well approximated in low-rank formats. Ident ...
The crystallography of twinning is based on the concepts of simple shear and obliquity introduced by Mugge, Mallard and Friedel at the turn of the last century, with tensor mathematics later developed by Bilby, Bevis and Crocker in the 1960s. We propose a ...
A geometric method of lattice reduction based on cycles of directional and hyperplanar shears is presented. The deviation from cubicity at each step of the reduction is evaluated by a parameter called 'basis rhombicity' which is the sum of the absolute val ...
The purpose of this thesis is to provide an intrinsic proof of a Gauss-Bonnet-Chern formula for complete Riemannian manifolds with finitely many conical singularities and asymptotically conical ends. A geometric invariant is associated to the link of both ...
We introduce a construction of subspaces of the spaces of tangential vector, n-vector, and tensor fields on surfaces. The resulting subspaces can be used as the basis of fast approximation algorithms for design and processing problems that involve tangenti ...
Tensor trains are a versatile tool to compress and work with high-dimensional data and functions. In this work we introduce the streaming tensor train approximation (STTA), a new class of algorithms for approximating a given tensor ' in the tensor train fo ...
We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method orig ...
We propose a graph signal processing framework to overcome the computational burden of Tensor Robust PCA (TRPCA). Our framework also serves as a convex alternative to graph regularized tensor factorization methods. Our method is based on projecting a tenso ...
We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its mutual information when the tensor is of even order. The proof uses the adaptive interpolation method, for which rank-on ...