Publication

Low-Rank Tensor Methods for High-Dimensional Problems

Christoph Max Strössner
2023
Thèse EPFL
Résumé

In this thesis, we propose and analyze novel numerical algorithms for solving three different high-dimensional problems involving tensors. The commonality of these problems is that the tensors can potentially be well approximated in low-rank formats. Identifying and exploiting this low-rank structure allows us to mitigate the curse of dimensionality.The first problem considered in this thesis is the computation of functional low-rank approximations of multivariate functions defined on tensor product domains. We develop two novel algorithms to compute such approximations by combining tensorized Chebyshev interpolation with low-rank approximations of the coefficient tensor. For most functions, our numerical experiments demonstrate that our algorithms require a lower number of function evaluations and achieve the same approximation error compared to existing methods. In addition, we solve partial differential equations using a novel global spectral method that can potentially be combined with functional low-rank approximations.The second problem of interest is the solution of multi-marginal optimal transport problems. After adding entropic regularization, these are equivalent to tensor scaling problems that can be solved using the Sinkhorn algorithm. In literature, it has been suggested to accelerate the Sinkhorn algorithm by exploiting either a graphical model structure or a low-rank tensor approximation. We propose to combine these two approaches to accelerate the solution of the tensor scaling problem even further.The third problem of interest is the computation of the self-diffusion matrix of a tagged particle process defined on a grid. We propose a novel approach based on computing the matrix via solving a high-dimensional tensor-valued optimization problem. We observe numerically that our approach is much less subject to statistical noise compared to classical approaches based on estimating long-time averages of empirical means of deviations of some stochastic processes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.