Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper we examine mobile ad-hoc networks (MANET) composed by unmanned aerial vehicles (UAVs). Due to the high-mobility of the nodes, these networks are very dynamic and the existing routing protocols partly fail to provide a reliable communication.We present Predictive-OLSR an extension to the Optimized Link-State Routing (OLSR) protocol: it enables efficient routing in very dynamic conditions. The key idea is to exploit GPS information to aid the routing protocol. Predictive-OLSR weights the expected transmission count (ETX) metric, taking into account the relative speed between the nodes. We provide numerical results obtained by a MAC-layer emulator that integrates a flight simulator to reproduce realistic flight conditions. These numerical results show that Predictive-OLSR significantly outperforms OLSR and BABEL, providing a reliable communication even in very dynamic conditions.
Matthias Grossglauser, Suhas Diggavi, Dominique Florian Tschopp
Dario Floreano, Bixio Rimoldi, Stefano Rosati, Grégoire Hilaire Marie Heitz, Karol Jacek Kruzelecki