Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Among the single-trajectory Gaussian-based methods for solving the time-dependent Schrödinger equation, the variational Gaussian approximation is the most accurate one. In contrast to Heller’s original thawed Gaussian approximation, it is symplectic, conse ...
Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysi ...
Stabilized Runge???Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge???Kutta me ...
Explicit stabilized integrators are an efficient alternative to implicit or semi-implicit methods to avoid the severe timestep restriction faced by standard explicit integrators applied to stiff diffusion problems. In this paper, we provide a fully discret ...
The explicit split-operator algorithm has been extensively used for solving not only linear but also nonlinear time-dependent Schrödinger equations. When applied to the nonlinear Gross–Pitaevskii equation, the method remains time-reversible, norm-conservin ...
The aim of this thesis is to develop a model that provides a fast analysis of structures subjected to large displacements. This is done by transforming the structure in a set of nite particles and by applying a method called dynamic relaxation to it. The l ...
Dealing with strong shocks while retaining low numerical dissipation traditionally has been one of the major challenges for high order methods like discontinuous Galerkin (DG). In the literature, shock capturing models have been designed for DG based on va ...
The explicit split-operator algorithm is often used for solving the linear and nonlinear time-dependent Schrödinger equations. However, when applied to certain nonlinear time-dependent Schrödinger equations, this algorithm loses time reversibility and seco ...
Stabilized Runge–Kutta (aka Chebyshev) methods are especially efficient for the numerical solution of large systems of stiff differential equations because they are fully explicit; hence, they are inherently parallel and easily accommodate nonlinearity. Fo ...
Diabatization of the molecular Hamiltonian is a standard approach to remove the singularities of nonadiabatic couplings at conical intersections of adiabatic potential energy surfaces. In general, it is impossible to eliminate the nonadiabatic couplings en ...