Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
A number of new localized, multiscale transforms have recently been introduced to analyze data residing on weighted graphs. In signal processing tasks such as regularization and compression, much of the power of classical wavelets on the real line is derived from their theoretically and empirically proven ability to sparsely represent piecewise-smooth signals, which appear to be locally polynomial at sufficiently small scales. As of yet in the graph setting, there is little mathematical theory relating the sparsity of localized, multiscale transform coefficients to the structures of graph signals and their underlying graphs. In this paper, we begin to explore notions of global and local regularity of graph signals, and analyze the decay of spectral graph wavelet coefficients for regular graph signals.
Maximilien Claude Robert Dreveton
Pascal Frossard, Chenglin Li, Mingxing Xu