Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
PropriétéLa propriété est la possession d'un bien meuble ou immeuble ou d'une production intellectuelle, reconnue et consacrée par une autorité (divine ou humaine), la société, la loi, la raison générale ou le consentement universel C'est selon Pierre-Joseph Proudhon une usucapion ou une usurpation. La Révolution française a exalté le droit de propriété : inviolable et sacrée, selon l'article 17 de la Déclaration des droits de l'homme et du citoyen de 1789.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Produit tensoriel de deux modulesLe produit tensoriel de deux modules est une construction en théorie des modules qui, à deux modules sur un même anneau commutatif unifère A, assigne un module. Le produit tensoriel est très important dans les domaines de l'analyse fonctionnelle, de la topologie algébrique et de la géométrie algébrique. Le produit tensoriel permet en outre de ramener l'étude d'applications bilinéaires ou multilinéaires à des applications linéaires.
Théorèmes d'isomorphismeEn mathématiques, les trois théorèmes d'isomorphisme fournissent l'existence d'isomorphismes dans le cadre de la théorie des groupes. Ces trois théorèmes d'isomorphisme sont généralisables à d'autres structures que les groupes. Voir notamment « Anneau quotient », « Algèbre universelle » et « Groupe à opérateurs ». Le premier théorème d'isomorphisme affirme qu'étant donné un morphisme de groupes , on peut rendre injectif en quotientant par son noyau Ker f, qui est un sous-groupe normal de G.
Nombre p-adiquevignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique.
AdditionL'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les volumes. En particulier en physique, l'addition de deux grandeurs ne peut s'effectuer numériquement que si ces grandeurs sont exprimées avec la même unité de mesure. Le résultat d'une addition est appelé une somme, et les nombres que l'on additionne, les termes.
Droit des biensLe droit des biens ou droits réels est branche du droit qui étudie les relations juridiques dont l'origine ou l'objet se rapporte aux biens ou choses. Le droit des biens s'intéresse aux relations entre personnes et biens. Les biens sont un ensemble qui comporte tant des choses matérielles (voiture) que des choses immatérielles (droit d'auteur), tant des choses meubles (action de société) que des choses immeubles (appartement). Les droits réels comprennent un certain nombre de principes fondamentaux issus de leur nature particulière.
Distributive latticeIn mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.
Propriété personnelleLa propriété personnelle (en anglais personal property) est un type de propriété hérité du droit romain qu'on retrouve aujourd'hui dans le système de droit anglais dit de Common law mais qui ne correspond à aucune classification française. La propriété personnelle porte sur des biens mobiliers corporels ou non, et se distingue de la « propriété réelle » (real property) qui porte sur l'immobilier. En droit romain, la propriété personnelle est appelée propriété mobilière (n'importe quelle chose qui peut être déplacée d'un endroit à un autre).