Publication

Decay Properties of Riesz Transforms and Steerable Wavelets

Résumé

The Riesz transform is a natural multidimensional extension of the Hilbert transform, and it has been the object of study for many years due to its nice mathematical properties. More recently, the Riesz transform and its variants have been used to construct complex wavelets and steerable wavelet frames in higher dimensions. The flip side of this approach, however, is that the Riesz transform of a wavelet often has slow decay. One can nevertheless overcome this problem by requiring the original wavelet to have sufficient smoothness, decay, and vanishing moments. In this paper, we derive necessary conditions in terms of these three properties that guarantee the decay of the Riesz transform and its variants, and, as an application, we show how the decay of the popular Simoncelli wavelets can be improved by appropriately modifying their Fourier transforms. By applying the Riesz transform to these new wavelets, we obtain steerable frames with rapid decay.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Wavelet transform
In mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Ondelette
thumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Discrete wavelet transform
In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Afficher plus
Publications associées (63)

Wavelet-Fourier CORSING techniques for multidimensional advection-diffusion-reaction equations

Fabio Nobile, Simone Brugiapaglia

We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection–diffusion–reaction equations based on the COmpRessed SolvING (CORSING) paradigm. Combining the Petrov–Galerkin technique with the compressed ...
2020

A non-stationary stochastic ensemble generator for radar rainfall fields based on the short-space Fourier transform

Nikola Besic, Urs Martin Germann, Daniele Nerini

In this paper we present a non-stationary stochastic generator for radar rainfall fields based on the short-space Fourier transform (SSFT). The statistical properties of rainfall fields often exhibit significant spatial heterogeneity due to variability in ...
Copernicus GmbH2017

Optimal Representations of Sparse Stochastic Processes with Applications in Image Processing

Pedram Pad

We establish in the world of stochastic processes a theoretical relation between sparsity and wavelets. The underlying principle is to treat stochastic processes as generalized functions, which facilitates the study of their properties in a transform domai ...
EPFL2017
Afficher plus
MOOCs associés (6)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.