Morlet waveletIn mathematics, the Morlet wavelet (or Gabor wavelet) is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian window (envelope). This wavelet is closely related to human perception, both hearing and vision. Wavelet#History In 1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed sinusoids for time-frequency decomposition, which he referred to as atoms, and which provide the best trade-off between spatial and frequency resolution.
Désintégration du protonEn physique des particules, la désintégration du proton désigne un mode hypothétique de décroissance radioactive dans laquelle le proton se désintègre en des particules subatomiques plus légères, comme le pion neutre et le positron. Il n'existe actuellement aucune preuve expérimentale indiquant que la désintégration du proton se produise ; ce qui place la demi-vie théorique du proton à une valeur supérieure à 10 années. Dans le modèle standard, les protons (un type de baryon), sont théoriquement stables parce que le nombre baryonique est censé se conserver.
Transformées en sinus et en cosinusEn mathématiques, les transformées de Fourier dites en sinus et en cosinus sont des formes de la transformée de Fourier qui n'utilisent pas de nombres complexes. Ce sont les formes utilisées à l'origine par Joseph Fourier et sont encore préférées dans certaines applications, comme le traitement du signal, les statistiques ou la résolution des équations aux dérivées partielles utilisant les méthodes spectrales.
Riesz potentialIn mathematics, the Riesz potential is a potential named after its discoverer, the Hungarian mathematician Marcel Riesz. In a sense, the Riesz potential defines an inverse for a power of the Laplace operator on Euclidean space. They generalize to several variables the Riemann–Liouville integrals of one variable. If 0 < α < n, then the Riesz potential Iαf of a locally integrable function f on Rn is the function defined by where the constant is given by This singular integral is well-defined provided f decays sufficiently rapidly at infinity, specifically if f ∈ Lp(Rn) with 1 ≤ p < n/α.
Singular integral operators of convolution typeIn mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space.
Quadrature mirror filterIn digital signal processing, a quadrature mirror filter is a filter whose magnitude response is the mirror image around of that of another filter. Together these filters, first introduced by Croisier et al., are known as the quadrature mirror filter pair. A filter is the quadrature mirror filter of if . The filter responses are symmetric about : In audio/voice codecs, a quadrature mirror filter pair is often used to implement a filter bank that splits an input signal into two bands.
Neutrinoless double beta decayThe neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana nature of the neutrino particle. To this day, it has not been found. The discovery of the neutrinoless double beta decay could shed light on the absolute neutrino masses and on their mass hierarchy (Neutrino mass). It would mean the first ever signal of the violation of total lepton number conservation. A Majorana nature of neutrinos would confirm that the neutrino is its own antiparticle.
Produit de désintégrationEn physique nucléaire, un produit de désintégration est le nucléide descendant de la désintégration radioactive d'un nucléide précurseur. Les produits de désintégration sont extrêmement importants pour comprendre la radioactivité et la gestion des déchets radioactifs. En pratique, les produits de désintégration sont eux-mêmes souvent radioactifs. Il résulte de ceci que la plupart des radionucléides n'ont pas simplement un produit de désintégration, mais plutôt une chaîne de désintégration qui aboutit à un ou plusieurs nucléides stables.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.