Cristal photoniqueLes cristaux photoniques sont des structures périodiques de matériaux diélectriques, semi-conducteurs ou métallo-diélectriques modifiant la propagation des ondes électromagnétiques de la même manière qu'un potentiel périodique dans un cristal semi-conducteur affecte le déplacement des électrons en créant des bandes d'énergie autorisées et interdites. Les longueurs d'onde pouvant se propager dans le cristal se nomment des modes dont la représentation énergie-vecteur d'onde forme des bandes.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Fibre à cristal photoniquevignette|Vue au microscope électronique d'une fibre à cristal photonique. Le cœur central a un diamètre de 5 μm, contre 4 μm pour les trous. vignette|Supercontinuum généré dans une fibre à cristal photonique La fibre à cristal photonique, en anglais Photonic-crystal fiber (abrégé PCF) est un type de fibre optique, basée sur les propriétés des cristaux photoniques. Une fibre à cristal photonique possède un cœur creux qui lui permet de confiner la lumière plus efficacement qu'avec une fibre classique.
Photoniquevignette|Image de la lumière d'un laser ultra large-bande émergeant d'une fibre monomode de cristal photonique dont on voit la sortie à droite (point blanc).|alt=Sur fond noir une grande tache en forme d'étoile irisée à gauche et un petit point blanc à droite. La photonique est la branche de la physique concernant l'étude et la fabrication de composants permettant la génération, la transmission, le traitement (modulation, amplification) ou la conversion de signaux optiques.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Condition aux limites mêléeEn mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou une équation différentielle ordinaire. Par exemple, si l'on considère les vibrations d'une corde élastique de longueur L se déplaçant à une vitesse c dont une extrémité (en 0) est fixe, et l'autre (en L) est attachée à un anneau oscillant librement le long d'une tige droite, on a alors une équation sur un intervalle [0,L].
Optique intégréeL'optique intégrée concerne l'utilisation de technologies similaires à celles de la microélectronique pour la réalisation de composants optiques de très petite dimension. La réalisation des systèmes d'optique intégrée se fait par modification d'un substrat comme le phosphure d'indium. Ces technologies permettent de réaliser dans de faibles volumes des fonctions optiques élémentaires ou élaborées impossibles à réaliser par d’autres technologies. Leur géométrie générale est celle de plaquettes de quelques cm d'une épaisseur maximale de .