Type dépendantEn Informatique et en Logique, un type dépendant est un type qui peut dépendre d'une valeur définie dans le langage typé. Les langages Agda et Gallina (de l'assistant de preuve Coq) sont des exemples de langages à type dépendant. Les types dépendants permettent par exemple de définir le type des listes à n éléments. Voici un exemple en Coq. Inductive Vect (A: Type): nat -> Type := | nil: Vect A 0 | cons (n: nat) (x: A) (t: Vect A n): Vect A (S n).
Fonction imbriquéeUne fonction imbriquée ou fonction interne est une fonction dont la définition est encapsulée dans une autre fonction. Elle ne peut être appelée que par la fonction englobante ou par des fonctions imbriquées directement ou non dans la même fonction englobante. En d'autres termes, la portée de la fonction imbriquée est limitée par la fonction englobante; elle offre un contrôle très strict de leur visibilité (scope) par le reste du programme.
Partial applicationIn computer science, partial application (or partial function application) refers to the process of fixing a number of arguments to a function, producing another function of smaller arity. Given a function , we might fix (or 'bind') the first argument, producing a function of type . Evaluation of this function might be represented as . Note that the result of partial function application in this case is a function that takes two arguments. Partial application is sometimes incorrectly called currying, which is a related, but distinct concept.
Pure type systemNOTOC In the branches of mathematical logic known as proof theory and type theory, a pure type system (PTS), previously known as a generalized type system (GTS), is a form of typed lambda calculus that allows an arbitrary number of sorts and dependencies between any of these. The framework can be seen as a generalisation of Barendregt's lambda cube, in the sense that all corners of the cube can be represented as instances of a PTS with just two sorts. In fact, Barendregt (1991) framed his cube in this setting.
Function applicationIn mathematics, function application is the act of applying a function to an argument from its domain so as to obtain the corresponding value from its range. In this sense, function application can be thought of as the opposite of function abstraction. Function application is usually depicted by juxtaposing the variable representing the function with its argument encompassed in parentheses. For example, the following expression represents the application of the function ƒ to its argument x.
Total functional programmingTotal functional programming (also known as strong functional programming, to be contrasted with ordinary, or weak functional programming) is a programming paradigm that restricts the range of programs to those that are provably terminating. Termination is guaranteed by the following restrictions: A restricted form of recursion, which operates only upon 'reduced' forms of its arguments, such as Walther recursion, substructural recursion, or "strongly normalizing" as proven by abstract interpretation of code.
Extensible programmingExtensible programming is a term used in computer science to describe a style of computer programming that focuses on mechanisms to extend the programming language, compiler and runtime environment. Extensible programming languages, supporting this style of programming, were an active area of work in the 1960s, but the movement was marginalized in the 1970s. Extensible programming has become a topic of renewed interest in the 21st century. The first paper usually associated with the extensible programming language movement is M.
Null coalescing operatorThe null coalescing operator (called the Logical Defined-Or operator in Perl) is a binary operator that is part of the syntax for a basic conditional expression in several programming languages, including C#, PowerShell as of version 7.0.0, Perl as of version 5.10, Swift, and PHP 7.0.0. While its behavior differs between implementations, the null coalescing operator generally returns the result of its left-most operand if it exists and is not null, and otherwise returns the right-most operand.
Application binary interfacevignette|300px|Exemples pour une interface binaire-programme stable et instable une interface de programmation stable et instable. En informatique, une Application Binary Interface (ABI, interface binaire-programme), décrit une interface de bas niveau entre les applications et le système d'exploitation, entre une application et une bibliothèque ou bien entre différentes parties d’une application. Une ABI diffère d’une API, puisqu'une API définit une interface entre du code source et une bibliothèque, de façon à assurer que le code source fonctionnera (compilera, si applicable) sur tout système supportant cette API.
Théorie des types homotopiquesvignette| Couverture de la Théorie des types homotopiques : Fondations univalentes des mathématiques. Dans la logique mathématique et de l’informatique, la théorie des types homotopiques (en anglais : Homotopy Type Theory HoTT) fait référence à différentes lignes de développement de la théorie des types intuitionnistes, basée sur l’interprétation des types comme des objets auxquels l’intuition de la théorie de l’homotopie s’applique.