Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Minimum-variance unbiased estimatorIn statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter. For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation.
Traitement de la paroleLe traitement de la parole est une discipline technologique dont l'objectif est la captation, la transmission, l'identification et la synthèse de la parole. Dans ce domaine, on peut définir la parole comme un texte oral. On s'intéresse à l'intelligibilité, c'est-à-dire à la possibilité, pour la personne qui écoute, de comprendre sans erreur le texte émis ; à l'amélioration de l'intelligibilité quand le signal est dégradé ; à l'identification de la personne qui parle ; à l'établissement automatique d'un texte écrit à partir de la parole ; à la synthèse de la parole à partir d'un texte écrit.
Processus gaussienEn théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu.
Production de la paroleLa production de la parole est un processus qui transforme les pensées en parole. Cette activité comprend la sélection des mots, l'organisation des formes grammaticales pertinentes et l'articulation des sons par le système moteur via l'appareil vocal. Cette production peut être spontanée (par exemple, quand une personne prononce des mots lors d'une conversation), réactive (par exemple, quand elle identifie une illustration ou qu'elle fait une lecture à voix haute) ou imitative (quand elle répète les mots qu'une autre personne a dits).
Matrice laplacienneEn théorie des graphes, une matrice laplacienne, ou matrice de Laplace, est une matrice représentant un graphe. La matrice laplacienne d'un graphe G non orienté et non réflexif est définie par : où est la matrice des degrés de G et la matrice d'adjacence de G. Formellement : A la différence de la matrice d'adjacence d'un graphe, la matrice laplacienne a une interprétation algébrique ce qui rend son analyse spectrale fructueuse. Plus précisément la matrice correspond à l'opérateur de diffusion sur le graphe.
Synthèse vocaleLa synthèse vocale est une technique informatique de synthèse sonore qui permet de créer de la parole artificielle à partir de n'importe quel texte. Pour obtenir ce résultat, elle s'appuie à la fois sur des techniques de traitement linguistique, notamment pour transformer le texte orthographique en une version phonétique prononçable sans ambiguïté, et sur des techniques de traitement du signal pour transformer cette version phonétique en son numérisé écoutable sur un haut parleur.
Perception de la paroleLa perception de la parole est le processus par lequel les humains sont capables d'interpréter et de comprendre les sons utilisés dans le langage. L'étude de la perception de la parole est reliée aux champs de la phonétique, de phonologie en linguistique, de psychologie cognitive et de perception en psychologie. Les recherches dans ce domaine essaient de comprendre comment les auditeurs humains reconnaissent les phonèmes (sons de la paroles) ou autres sons tels que la syllabe ou les rimes, et utilisent cette information pour comprendre le langage parlé.