Data PreprocessingData preprocessing can refer to manipulation or dropping of data before it is used in order to ensure or enhance performance, and is an important step in the data mining process. The phrase "garbage in, garbage out" is particularly applicable to data mining and machine learning projects. Data collection methods are often loosely controlled, resulting in out-of-range values, impossible data combinations, and missing values, amongst other issues. Analyzing data that has not been carefully screened for such problems can produce misleading results.
Sequential pattern miningSequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity. Sequential pattern mining is a special case of structured data mining. There are several key traditional computational problems addressed within this field.
Generalization errorFor supervised learning applications in machine learning and statistical learning theory, generalization error (also known as the out-of-sample error or the risk) is a measure of how accurately an algorithm is able to predict outcome values for previously unseen data. Because learning algorithms are evaluated on finite samples, the evaluation of a learning algorithm may be sensitive to sampling error. As a result, measurements of prediction error on the current data may not provide much information about predictive ability on new data.
Dirichlet-multinomial distributionIn probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution (after George Pólya). It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Exploitation minièrethumb|Extraction d'un gisement de charbon. thumb|Mineur portant sa collecte de soufre depuis le sol du volcan Ijen (2015). thumb|Carte simplifiée des activités minières dans le monde. vignette|SMD: Séance de travail entre les cadres des Ministères des Mines et de la Géologie; de l'Administration du Territoire et de la Décentralisation et l'Administration de la société aurifère NordGold Guinée.
Analyse sémantique latente probabilisteL’analyse sémantique latente probabiliste (de l'anglais, Probabilistic latent semantic analysis : PLSA), aussi appelée indexation sémantique latente probabiliste (PLSI), est une méthode de traitement automatique des langues inspirée de l'analyse sémantique latente. Elle améliore cette dernière en incluant un modèle statistique particulier. La PLSA possède des applications dans le filtrage et la recherche d'information, le traitement des langues naturelles, l'apprentissage automatique et les domaines associés.
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Réseau de téléphonie mobileUn réseau de téléphonie mobile est un réseau téléphonique qui permet l'utilisation simultanée de millions de téléphones sans fil, immobiles ou en mouvement, y compris lors de déplacements à grande vitesse et sur une grande distance. Pour atteindre cet objectif, toutes les technologies d'accès radio doivent résoudre un même problème : partager et répartir aussi efficacement que possible une bande de fréquences hertzienne unique entre de très nombreux utilisateurs.