Combining Content with User Preferences for TED Lecture Recommendation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The bag-of-words (BOW) model is the common approach for classifying documents, where words are used as feature for training a classifier. This generally involves a huge number of features. Some techniques, such as Latent Semantic Analysis (LSA) or Latent D ...
In the last decade, online social networks have enabled people to interact in many ways with each other and with content. The digital traces of such actions reveal people's preferences towards online content such as news or products. These traces often res ...
We propose a method for extractive summarization of audiovisual recordings focusing on topic-level segments. We first build a content similarity graph between all segments across the collection, using word vectors from the transcripts, and then select the ...
This report presents a study on assisting users in building queries to perform real-time searches in a news and social media monitoring system. The system accepts complex queries, and we assist the user by suggesting related keywords or entities. We do thi ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
Recent works on word representations mostly rely on predictive models. Distributed word representations (aka word embeddings) are trained to optimally predict the contexts in which the corresponding words tend to appear. Such models have succeeded in captu ...
Recently, there has been a lot of effort to represent words in continuous vector spaces. Those representations have been shown to capture both semantic and syntactic information about words. However, distributed representations of phrases remain a challeng ...
Word embedding is a feature learning technique which aims at mapping words from a vocabulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora of unlabeled text, such continuous space representations can be computed for c ...
This paper introduces a new dataset and compares several methods for the recommendation of non-fiction audio visual material, namely lectures from the TED website. The TED dataset contains 1,149 talks and 69,023 profiles of users, who have made more than 1 ...
This paper introduces a query refinement method applied to questions asked by users to a system during a meeting or a conversation that they have with other users. To answer the questions, the proposed method leverages the local context of the conversation ...