Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Cellule pyramidaleLes cellules pyramidales sont un certain type de neurone. Leur nom vient de la morphologie triangulaire de leur péricaryon. Elles possèdent en outre un arbre dendritique très développé qui reçoit un grand nombre de synapses. Leur axone peut projeter à grande distance. De par leurs propriétés morphologiques, on pense que les cellules pyramidales jouent un rôle central dans l'intégration de signaux convergents. Par ailleurs, elles s'adressent aux motoneurones et ont la possibilité de commander la force de contraction des muscles.
Upper motor neuronUpper motor neurons (UMNs) is a term introduced by William Gowers in 1886. They are found in the cerebral cortex and brainstem and carry information down to activate interneurons and lower motor neurons, which in turn directly signal muscles to contract or relax. UMNs in the cerebral cortex are the main source of voluntary movement. They are the larger pyramidal cells in the cerebral cortex. There is a type of giant pyramidal cell called Betz cells and are found just below the surface of the cerebral cortex within layer V of the primary motor cortex.
Computational anatomyComputational anatomy is an interdisciplinary field of biology focused on quantitative investigation and modelling of anatomical shapes variability. It involves the development and application of mathematical, statistical and data-analytical methods for modelling and simulation of biological structures. The field is broadly defined and includes foundations in anatomy, applied mathematics and pure mathematics, machine learning, computational mechanics, computational science, biological imaging, neuroscience, physics, probability, and statistics; it also has strong connections with fluid mechanics and geometric mechanics.
Models of neural computationModels of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
Threshold potentialIn electrophysiology, the threshold potential is the critical level to which a membrane potential must be depolarized to initiate an action potential. In neuroscience, threshold potentials are necessary to regulate and propagate signaling in both the central nervous system (CNS) and the peripheral nervous system (PNS). Most often, the threshold potential is a membrane potential value between –50 and –55 mV, but can vary based upon several factors.
AxoneLaxone, ou fibre nerveuse, est le prolongement du neurone qui conduit le signal électrique du corps cellulaire vers les zones synaptiques. Le long de l'axone, ce signal est constitué de potentiels d'action. Les autres prolongements du neurone sont les dendrites qui conduisent le signal des synapses au corps cellulaire. Les neurones ont le plus souvent un seul axone et plusieurs dendrites. Néanmoins, la terminaison de l'axone est très ramifiée — on parle d'arborisation terminale — ce qui lui permet de contacter plusieurs autres neurones avec la même information.
Chemical synapseChemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body. At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the synaptic cleft) that is adjacent to another neuron.
Guidage axonalLe guidage axonal est une branche du neurodéveloppement. Elle étudie comment les axones parviennent à trouver leurs cellules cibles notamment grâce aux cônes de croissance. Le principe élémentaire du guidage axonal repose sur la chemoattraction et la chemorepulsion : Le cône de croissance est attiré par des molécules présentes dans le milieu extracellulaire et sécrétées par les cellules de sa zone de destination (ex: des facteurs de croissance).
Neuronal ensembleA neuronal ensemble is a population of nervous system cells (or cultured neurons) involved in a particular neural computation. The concept of neuronal ensemble dates back to the work of Charles Sherrington who described the functioning of the CNS as the system of reflex arcs, each composed of interconnected excitatory and inhibitory neurons. In Sherrington's scheme, α-motoneurons are the final common path of a number of neural circuits of different complexity: motoneurons integrate a large number of inputs and send their final output to muscles.