Ensemble infini non dénombrableUn ensemble infini non dénombrable est un ensemble qui est « trop gros » pour être dénombrable. De manière précise, c'est un ensemble infini qui ne peut être mis en bijection avec les entiers naturels. En présence de l'axiome du choix, cela signifie que son cardinal est strictement supérieur au cardinal du dénombrable. On dit souvent simplement ensemble non dénombrable. L'ensemble des nombres réels en est un exemple. Avec l'hypothèse généralisée du continu, un ensemble des cardinalités infinies non dénombr
Optical phase spaceIn quantum optics, an optical phase space is a phase space in which all quantum states of an optical system are described. Each point in the optical phase space corresponds to a unique state of an optical system. For any such system, a plot of the quadratures against each other, possibly as functions of time, is called a phase diagram. If the quadratures are functions of time then the optical phase diagram can show the evolution of a quantum optical system with time.
Séquence principalevignette|540x540px|Le diagramme de Hertzsprung-Russell figure les étoiles. En abscisse, l'indice de couleur (B-V) ; en ordonnée, la magnitude absolue. La séquence principale se voit comme une bande diagonale marquée allant du haut à gauche au bas à droite. Ce diagramme représente du catalogue Hipparcos, ainsi que de faible luminosité (naines rouges ou blanches) extraites du catalogue Gliese des étoiles proches.
RhéologieLa rhéologie (du grec ancien : , « couler » et , « étude ») est l'étude de la déformation et de l'écoulement de la matière sous l'effet d'une contrainte appliquée. Le mot en (en anglais) a été introduit en 1928 par Eugene Bingham, professeur à l'université Lehigh aux États-Unis, sur une suggestion de son collègue Markus Reiner. Le mot est emprunté à la fameuse expression d'Héraclite Panta rhei (« Tout s'écoule »). Il a été francisé en « rhéologie » en 1943.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
HemorheologyHemorheology, also spelled haemorheology (from Greek ‘αἷμα, haima 'blood' and rheology, from Greek ῥέω rhéō, 'flow' and -λoγία, -logia 'study of'), or blood rheology, is the study of flow properties of blood and its elements of plasma and cells. Proper tissue perfusion can occur only when blood's rheological properties are within certain levels. Alterations of these properties play significant roles in disease processes. Blood viscosity is determined by plasma viscosity, hematocrit (volume fraction of red blood cell, which constitute 99.
Union (mathématiques)Dans la théorie des ensembles, l'union ou réunion est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique ou inclusif et est notée ∪. L'union de deux ensembles A et B est l'ensemble qui contient tous les éléments qui appartiennent à A ou appartiennent à B. On la note A ∪ B et on la dit « A union B » Formellement : Par exemple l'union des ensembles A = {1, 2, 3} et B = {2, 3, 4} est l'ensemble {1, 2, 3, 4}.
Étoile jaune-blanc de la séquence principaleUne étoile jaune-blanc de la séquence principale est une étoile de type spectral F. F est le type spectral à proprement parler, qui lui donne son nom de "jaune-blanc", et (lire « cinq » en chiffres romains) est sa classe de luminosité, signifiant que c'est une « étoile naine », à comprendre ici dans le sens d'étoile de la séquence principale. Les étoiles jaune-blanc de la séquence principale possèdent des raies d'absorption de l'hydrogène dont l'intensité diminue par rapport aux étoiles de type A, des raies d'éléments ionisés, ainsi que des raies de métaux neutres dont l'intensité augmente au sein de la classe.