Yield managementvignette|Capture d’écran de w:fr:Grisbi Le yield management est un système de gestion tarifaire des capacités disponibles telles des chambres en hôtellerie ou des sièges dans le transport aérien et ferroviaire, qui a pour objectif l'optimisation du remplissage et du chiffre d'affaires. On l'appelle également revenue management, ou encore de manière restrictive tarification en temps réel (selon Cariou) ou tarification différenciée.
Cutting stock problemIn operations research, the cutting-stock problem is the problem of cutting standard-sized pieces of stock material, such as paper rolls or sheet metal, into pieces of specified sizes while minimizing material wasted. It is an optimization problem in mathematics that arises from applications in industry. In terms of computational complexity, the problem is an NP-hard problem reducible to the knapsack problem. The problem can be formulated as an integer linear programming problem.
HeuristiqueL'heuristique ou euristique (du grec ancien εὑρίσκω, heuriskô, « je trouve ») est en résolvant des problèmes à partir de connaissances incomplètes. Ce type d'analyse permet d'aboutir en un temps limité à des solutions acceptables. Celles-ci peuvent s'écarter de la solution optimale. Pour Daniel Kahneman, c'est une procédure qui aide à trouver des réponses adéquates, bien que souvent imparfaites à des questions difficiles. Ce système empirique inclut notamment la méthode essai-erreur ou l'analyse statistique des échantillons aléatoires.
Dynamic pricingDynamic pricing, also referred to as surge pricing, demand pricing, or time-based pricing, is a revenue management pricing strategy in which businesses set flexible prices for products or services based on current market demands. Businesses are able to change prices based on algorithms that take into account competitor pricing, supply and demand, and other external factors in the market. Dynamic pricing is a common practice in several industries such as hospitality, tourism, entertainment, retail, electricity, and public transport.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Problème de couverture par ensemblesEn informatique théorique, le problème de couverture par ensembles (Set Cover problem en anglais) est un problème d'algorithmique particulièrement important car c'est l'un des 21 problèmes NP-complets de Karp . Étant donné un ensemble A, on dit qu'un élément e est couvert par A si e appartient à A. Étant donné un ensemble U et une famille S de sous-ensembles de U, le problème consiste à couvrir tous les éléments U avec une sous-famille de S la plus petite possible.
Modèle d'évaluation par arbitrageLe modèle d'évaluation par arbitrage ou MEA (en anglais, arbitrage pricing theory ou APT) est un modèle financier d'évaluation des actifs d'un portefeuille qui s'appuie sur l'observation des anomalies du MEDAF et considère les variables propres aux firmes susceptibles d'améliorer davantage le pouvoir prédictif du modèle d'évaluation. Pour lutter contre l'instabilité des bétas du MEDAF, le modèle MEA introduit des facteurs macroéconomiques et spécifiques.
Rationalité limitéeLa rationalité limitée (bounded rationality en version originale) est l'idée selon laquelle la capacité de décision d'un individu est altérée par un ensemble de contraintes comme le manque d'information, des biais cognitifs ou encore le manque de temps. Dans cette optique, les décideurs ont tendance à choisir des solutions satisfaisantes plutôt qu'optimales. Le concept a été initialement théorisé par Herbert Simon et utilisé en sociologie, en psychologie, en microéconomie ou encore en philosophie politique (par exemple chez Jon Elster).
Intelligence distribuéeL'intelligence distribuée, appelée aussi intelligence en essaim, désigne l'apparition de phénomènes cohérents à l'échelle d'une population dont les individus agissent selon des règles simples. L'interaction ou la synergie entre actions individuelles simples peut de façons variées permettre l'émergence de formes, organisations, ou comportements collectifs, complexes ou cohérents, tandis que les individus eux se comportent à leur échelle indépendamment de toute règle globale.
Décomposition QREn algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.