Primal and dual linear decision rules in stochastic and robust optimization
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Dynamic stochastic optimization problems with a large (possibly infinite) number of decision stages and high-dimensional state vectors are inherently difficult to solve. In fact, scenario tree-based algorithms are unsuitable for problems with many stages, ...
The design and analysis of efficient approximation schemes are of fundamental importance in stochastic programming research. Bounding approximations are particularly popular for providing strict error bounds that can be made small by using partitioning tec ...
Consider the problem of signal detection via multiple distributed noisy sensors. We study a linear decision fusion rule of [Z. Quan, S. Cui, and A. H. Sayed, ¿Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks,¿ IEEE J. Sel. Topics ...
This paper introduces p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We work out both worst case and average case recovery analyses of this algorithm and show that the latter ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2007
This paper introduces p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We work out both worst case and average case recovery analyses of this algorithm and show that the latte ...
This paper introduces p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We work out both worst case and average case recovery analyses of this algorithm and show that the latter ...
The authors formalize the description of the buffer-constrained adaptive quantization problem. For a given set of admissible quantizers used to code a discrete nonstationary signal sequence in a buffer-constrained environment, they formulate the optimal so ...