Espace de SobolevEn analyse mathématique, les espaces de Sobolev sont des espaces fonctionnels particulièrement adaptés à la résolution des problèmes d'équation aux dérivées partielles. Ils doivent leur nom au mathématicien russe Sergueï Lvovitch Sobolev. Plus précisément, un espace de Sobolev est un espace vectoriel de fonctions muni de la norme obtenue par la combinaison de la norme L de la fonction elle-même et de ses dérivées jusqu'à un certain ordre. Les dérivées sont comprises dans un sens faible, au sens des distributions afin de rendre l'espace complet.
Modèle de cointégrationLa cointégration est une propriété statistique des séries temporelles introduite dans l'analyse économique, notamment par Engle et Newbold (1974). En des termes simples, la cointégration permet de détecter la relation de long terme entre deux ou plusieurs séries temporelles. Sa formalisation rigoureuse est due à Granger (1981), et Johansen (1991, 1995). Techniquement, la notion de cointégration implique implicitement celle d'intégration.
Transformation bilinéaireLa transformation bilinéaire est une méthode de traitement numérique du signal pour la conception de filtres numériques calqués sur des filtres analogiques. Elle permet le passage d'une représentation continue à une représentation discrète des filtres. La transformation bilinéaire est un cas particulier de transformation de Möbius. L'image de la droite imaginaire () est le cercle unité dans le plan complexe.
Matched filterIn signal processing, a matched filter is obtained by correlating a known delayed signal, or template, with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unknown signal with a conjugated time-reversed version of the template. The matched filter is the optimal linear filter for maximizing the signal-to-noise ratio (SNR) in the presence of additive stochastic noise.
Fonction C∞ à support compactEn mathématiques, une fonction C à support compact (également appelée fonction test) est une fonction infiniment dérivable dont le support est compact. Ces fonctions sont au cœur de la théorie des distributions, puisque ces dernières sont construites comme éléments du dual topologique de l'espace des fonctions tests. Les fonctions C à support compact sont également utilisées pour construire des suites régularisantes et des partitions de l'unité de classe C.
Bilinear time–frequency distributionBilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.
Interacting particle systemIn probability theory, an interacting particle system (IPS) is a stochastic process on some configuration space given by a site space, a countably-infinite-order graph and a local state space, a compact metric space . More precisely IPS are continuous-time Markov jump processes describing the collective behavior of stochastically interacting components. IPS are the continuous-time analogue of stochastic cellular automata.