Horseshoe magnetA horseshoe magnet is either a permanent magnet or an electromagnet made in the shape of a horseshoe (in other words, in a U-shape). The permanent kind has become the most widely recognized symbol for magnets. It is usually depicted as red and marked with ′North' and 'South' poles. Although rendered obsolete in the 1950s by squat, cylindrical magnets made of modern materials, horseshoe magnets are still regularly shown in elementary school textbooks.
Force between magnetsMagnets exert forces and torques on each other due to the rules of electromagnetism. The forces of attraction field of magnets are due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the material. Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields.
Tôles feuilletéesLe terme tôles feuilletées est employé en électrotechnique et en électronique pour désigner l'assemblage de fines tôles de fer doux ou d'acier utilisé pour la fabrication du circuit magnétique d'un certain nombre de bobines, tel que les électroaimants, les transformateurs de toutes puissances, ainsi que les pièces magnétiques de certaines machines électriques tournantes. thumb|Le feuilletage permet de réduire les pertes par courants de Foucault. Le feuilletage de tôles est fait de l'empilement de tôles d'acier, de même dimension, les unes sur les autres.
Palier magnétiqueUn palier magnétique est un palier qui supporte une charge grâce à la sustentation électromagnétique (ou "lévitation magnétique"). Les paliers magnétiques permettent le support de pièces mobiles sans contact physique. Il existe deux types de paliers magnétiques : Les paliers magnétiques "actifs" asservis où un système de contrôle électronique régule des électroaimants assurant le centrage. La majorité des applications actuelles utilisent ce principe.
Molecular engineeringMolecular engineering is an emerging field of study concerned with the design and testing of molecular properties, behavior and interactions in order to assemble better materials, systems, and processes for specific functions. This approach, in which observable properties of a macroscopic system are influenced by direct alteration of a molecular structure, falls into the broader category of “bottom-up” design.
Pression magnétiqueEn électromagnétisme, la pression magnétique désigne une quantité associée au champ magnétique, s'apparentant dans certaines situations à une force de pression, d'où son nom. La pression magnétique apparaît en magnétohydrodynamique, quand on écrit la version idoine de l'équation d'Euler, c'est-à-dire l'équivalent du principe fondamental de la dynamique appliqué à un élément de fluide soumis à un champ magnétique.
Stress–strain analysisStress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
Droplet-based microfluidicsDroplet-based microfluidics manipulate discrete volumes of fluids in immiscible phases with low Reynolds number and laminar flow regimes. Interest in droplet-based microfluidics systems has been growing substantially in past decades. Microdroplets offer the feasibility of handling miniature volumes (μl to fl) of fluids conveniently, provide better mixing, encapsulation, sorting, sensing and are suitable for high throughput experiments.
Force conservativeUne force est dite conservative lorsque le travail produit par cette force est indépendant du chemin suivi par son point d'action. Dans le cas contraire, la force est dite non conservative. Les forces conservatives possèdent trois propriétés remarquables : Une force conservative dérive d'une énergie potentielle : ; Le travail exercé par la force est égal à l'opposé de la variation de l'énergie potentielle : ; L'énergie mécanique d'un système, somme de l'énergie cinétique et de l'énergie potentielle, soumis uniquement à l'action de forces conservatives est conservée : ; l'énergie potentielle est convertie en énergie cinétique.
Self-assembly of nanoparticlesNanoparticles are classified as having at least one of three dimensions be in the range of 1-100 nm. The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy.