Self-assembly of nanoparticlesNanoparticles are classified as having at least one of three dimensions be in the range of 1-100 nm. The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy.
Maximum de parcimonieLes méthodes de maximum de parcimonie, ou plus simplement méthodes de parcimonie ou encore parcimonie de Wagner, sont une méthode statistique non-paramétrique très utilisée, notamment pour l'inférence phylogénétique. Cette méthode permet de construire des arbres de classification hiérarchique après enracinement, lesquels permettent d'obtenir des informations sur la structure de parenté d'un ensemble de taxons. Sous l'hypothèse du maximum de parcimonie, l'arbre phylogénétique « préféré » est celui qui requiert le plus petit nombre de changements évolutifs.
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Loi de puissanceLa loi de puissance est une relation mathématique entre deux quantités. Si une quantité est la fréquence d'un évènement et l'autre est la taille d'un évènement, alors la relation est une distribution de la loi de puissance si les fréquences diminuent très lentement lorsque la taille de l'évènement augmente. En science, une loi de puissance est une relation entre deux quantités x et y qui peut s'écrire de la façon suivante : où a est une constante dite constante de proportionnalité, k, valeur négative, est une autre constante, dite exposant, puissance, indice ou encore degré de la loi et x nombre réel strictement positif.
Système nerveuxthumb|Le système nerveux humain. Le système nerveux (ou système neuronal) est un système biologique animal responsable de la coordination des actions avec l'environnement extérieur et de la communication rapide entre les différentes parties du corps. Les êtres vivants dotés d'un système nerveux sont nommés eumétazoaires. Il exerce un contrôle sur l'ensemble du corps qui se traduit par des actes volontaires ou involontaires, et des sensations qui sont conscientes ou inconscientes.
Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Evolutionary physiologyEvolutionary physiology is the study of the biological evolution of physiological structures and processes; that is, the manner in which the functional characteristics of individuals in a population of organisms have responded to natural selection across multiple generations during the history of the population. It is a sub-discipline of both physiology and evolutionary biology. Practitioners in the field come from a variety of backgrounds, including physiology, evolutionary biology, ecology, and genetics.
HomoplasieL’homoplasie est la similitude d’un état de caractère chez différents taxons qui, contrairement à l’homologie, ne provient pas d’un ancêtre commun. Il existe différents types d’homoplasie : la convergence, le parallélisme et la réversion. la convergence : ressemblance apparue indépendamment chez des taxons distants phylogénétiquement. le parallélisme : ressemblance apparue chez des taxons relativement proches. la réversion : un état dérivé d’un caractère revient à un état ancestral (antérieur).