Résumé
La loi de puissance est une relation mathématique entre deux quantités. Si une quantité est la fréquence d'un évènement et l'autre est la taille d'un évènement, alors la relation est une distribution de la loi de puissance si les fréquences diminuent très lentement lorsque la taille de l'évènement augmente. En science, une loi de puissance est une relation entre deux quantités x et y qui peut s'écrire de la façon suivante : où a est une constante dite constante de proportionnalité, k, valeur négative, est une autre constante, dite exposant, puissance, indice ou encore degré de la loi et x nombre réel strictement positif. On observe des lois de puissance dans beaucoup de domaines scientifiques (physique, biologie, psychologie, sociologie, économie, linguistique). Elles permettent en effet de décrire tous les phénomènes qui présentent une invariance d'échelle. Le terme anglais power law est parfois aussi utilisé en français. L'une des caractéristiques des lois de puissance est leur invariance d'échelle. Le phénomène est le suivant : pour un changement d'échelle de la variable, la fonction est seulement multipliée par un coefficient : Ainsi toutes les lois de puissance de même exposant sont équivalentes à un facteur constant près. Sur un graphique aux échelles logarithmiques, le graphe d'une loi de puissance est une droite. En effet, la relation ci-dessus peut s'écrire : En posant , et , on trouve l'équation d'une fonction affine dont la pente est la valeur de l'exposant k et l'ordonnée à l'origine est le logarithme de la constante de proportionnalité a. Elle est facilement confondue avec la loi de probabilité log-normale car elles sont toutes les deux asymptotiques. Pour éviter cet écueil on peut utiliser des méthodes bayesiennes ou de test statistique d'hypothèse. La caractérisation par un graphique en échelle logarithmique peut prêter à confusion avec une distribution log-normale, une règle simple pour les différencier est de vérifier que le tracé log-log est droit sur au moins trois ordres de grandeurs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.