Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper we consider a Proper Generalized Decomposition method to solve the steady incompressible Navier–Stokes equations with random Reynolds number and forcing term. The aim of such technique is to compute a low-cost reduced basis approximation of the full Stochastic Galerkin solution of the problem at hand. A particular algorithm, inspired by the Arnoldi method for solving eigenproblems, is proposed for an efficient greedy construction of a deterministic reduced basis approximation. This algorithm decouples the computation of the deterministic and stochastic components of the solution, thus allowing reuse of pre-existing deterministic Navier–Stokes solvers. It has the remarkable property of only requiring the solution of m uncoupled deterministic problems for the construction of a m-dimensional reduced basis rather than M coupled problems of the full Stochastic Galerkin approximation space, with m < M (up to one order of magnitude for the problem at hand in this work).
Simone Deparis, Luca Pegolotti